000 | 04076nam a2200181Ia 4500 | ||
---|---|---|---|
020 | _a8123906579 | ||
082 |
_a620.112 _bBAS |
||
100 | _aBasavarajaiah, B. S. | ||
245 | _aStrength of materials | ||
250 | _aEd. 2 | ||
260 |
_aNew Delhi _bCBS Publishers & Distributors _c2 |
||
300 | _avi,641,iip. | ||
500 | _aCONTENTS Strength of Materials CHAPTER 1.Simple Stresses and Strains 1-83 1.1. Definition of Stress and Strain 1.2. Elasticity 1.3. Hooke's Law 1.4. Stress-strain diagram 1.5. Factors of Safety 1.6. State of Simple Shear 1.7. Modulus of rigidity 1.8. Bulk Modulus 1.9. Poisson's Ratio 1.10- Relation Young's Modulus, Bulk Modulus and Modulus of Rigidity 1.11. Bars of varying sections 1.12 Stresses due to self weight 1.13. Compound bars 1.14. Tempe-stresses 1.15. Strain cnergyand Impact Load. CHAPTER 2. Compound Stresses and Strains 84-145 2.1. Introduction 2.2 Stresses on an inclined plane 2 3. Element subjected to two normal stresses 2.4. Ellipse of stress 2.5. General two-dimensional stress system 2.6. Principal stresses and principal planes 2.7. Motor's Circle of stress 2.8 Analysis of Strain 2.9. Mohr's strain circle 2.10. Strain rosettes CI,AITFR 3.Bending Stresses in Bi'ams 146-212 3.1. Theory of Simple Bending 3.2. Neutral Axis 3.3. Moment of Resistance (MR) 3.4. Secthn Modulus 3.5. Flutched Beams 3.6. Beams of Uniform Strength 3.7. Shearing Stresses in Beams 3.8. Principal Stresses at a point in a Beam 213-355 CHAPTER 4.Deflection of Beams213-355 4 I. Introduction 4.2. Circular bending 4.3. Diffe-rential equation for deflection curve 4.4. Double Integration method 4.5. Macaulay's method 4.6 Deflection by strain energy method 4.7. Moment area method 4.8. Deflection due to shear 4.9. Propped cantilevers and propped beams 4.10. Deflection due to impact CHAPTER 5. Torsion 356-442 5.1. Introduction 5.2. Pure Torsion 5 3 Relation between twisting moment shear stress and angle of twist 5.4. Polar Modulus 5.5. Torsional Rigidity 5.6. Power transmitted by a Shaft 5.7. Strain energy in Torsion 5.8. Combined Bending Torsion 5 9. quivalent Bending Moment 5.10. Equivalent Torque 5.11. Composite Shafts 5.12. Torsion of Tapering Shafts 5.13. Torsion of Statically In-determinate Members 5-14. Springs 5.15 Close-Coiled Helical Spring 5.16. Springs in Series and Parallels 5.17. Open-Coiled Helical Springs 5.18. Leaf, Laminated or Carriage Springs 5.19. Quarter Elliptic Springs 5.20. Close-Coiled Conical Springs 5.21. Flat Spiral Springs CHAPTER 6. Fixed and Continuous Beams 443-510 6.1 Fixed beams 6.2. Moment-area method for fixed beams 6.3. Macaulay's method for fixed beams 6.4. Effect of sinking of supports 6.5. Fixed beam subjected to a couple 6.6. Continuous beams CHAPTER 7. Columns aafl Struts 511-574 7.1. Definitions 7.2. Axially loaded short columns 7.3. Eccentrically loaded short columns 7.4. Axially loaded slender columns 7-5. Limitations of the Euler's formula 7.6. Intermediate columns 7.7. Emperical formulae for the columns design 7.8.Eccentrically loaded long columns 7.9. Columns with initial curvature 7.10. Laterally loaded struts 7.11. Laterally loaded ties 7.12. Prof Perry-Robertson formulae 7.13. Built-up columns CHAPTER 8. Thin and Thick Cylinders 575-620 Thin Cylindrical and Spherical Shells 8.1. Introduction 8.2. Thin Cylindrical Shell 8.3. Change in Volumeof CylindricalShell 8.4. Riveted Cylinders 8.5. WirewoundThin Cylinders 8.6. Thin Spherical Shell 8.7. Change in Volume of Spherical Shell Thick Cylindrical and Spherical Shells 8.8. Introduction 8.9 Thick Cylinder-Lame's Theory 8.10. Compound Cylinders 8.11. Shrinkage Allowance 8.12. Thick Spherical Shells CHAPTER 9. Theories of Elastic Failure 621-643 9.1. Introduction 9.2. Maximum principal stress theory 9.3. Maximum shearing stress theory 9.4- Strain energy theory 9.5. Shear strain energy theory 9-6. Maximum strain theory 9.7. Octahedral shear stress theory. | ||
700 | _aMahadevappa, P. | ||
890 | _aIndia | ||
891 | _aSchool of Building Science & Technology, CEPT Uni. | ||
999 |
_c32277 _d32277 |