Image from Google Jackets

Statistical rethinking : a bayesian course with examples in R and Stan

By: Series: Texts in statistical science series Ed. by Francesca Dominici & OthersPublication details: CRC Press 2016 Boca RatonDescription: xvii,469pISBN:
  • 9781482253443
Subject(s):
DDC classification:
  • 519.542 McE
Contents:
CONTENTS Preface xi Audience xi Teaching strategy xii How to use this book xii Installing the rethinking R package xvi Acknowledgments xvi Chapter 1. The Golem of Prague 1 Statistical golems 1 Statistical rethinking 4 Three tools for golem engineering 10 Summary 16 Chapter 2. Small Worlds and Large Worlds 19 The garden of forking data 20 Building a model 28 Components of the model 32 Making the model go 37 Summary 45 Practice 45 Chapter 3. Sampling the Imaginary 49 Sampling from a grid-approximate posterior 52 Sampling to summarize 53 Sampling to simulate prediction 61 Summary 68 Practice 69 Chapter 4. Linear Models 71 Why normal distributions are normal 72 A language for describing models 77 A Gaussian model of height 78 Adding a predictor 92 Polynomial regression 110 Summary 115 Practice 115 Chapter 5. Multivariate Linear Models 119 Spurious association 121 Masked relationship 135 When adding variables hurts 141 Categorical variables 152 Ordinary least squares and 1m 159 Summary 162 Practice 162 Chapter 6. Overfitting, Regularization, and Information Criteria 165 The problem with parameters 167 Information theory and model performance 174 Regularization 186 Information criteria 188 Using information criteria 195 Summary 205 Practice 205 Chapter 7. Interactions 209 Building an interaction 211 Symmetry of the linear interaction 223 Continuous interactions 225 Interactions in design formulas 235 Summary 236 Practice 236 Chapter 8. Markov Chain Monte Carlo 241 Good King Markov and His island kingdom 242 Markov chain Monte Carlo 245 Easy HMC: map2stan 247 Care and feeding of your Markov chain 255 Summary 263 Practice 263 Chapter 9. Big Entropy and the Generalized Linear Model 267 Maximum entropy 268 Generalized linear models 280 Maximum entropy priors 288 Summary 289 Chapter 10. Counting and Classification 291 Binomial regression 292 Poisson regression 311 Other count regressions 322 Summary 328 Practice 329 Chapter 11. Monsters and Mixtures 331 Ordered categorical outcomes 331 Zero-inflated outcomes 342 Over-dispersed outcomes 346 Summary , 351 Practice 352 Chapter 12. Multilevel Models 355 Example: Multilevel tadpoles 357 Varying effects and the under fitting/overfitting trade-off 364 More than one type of cluster 370 Multilevel posterior predictions 376 Summary 384 Practice 384 Chapter 13. Adventures in Covariance 387 Varying slopes by construction 389 Example: Admission decisions and gender 398 Example: Cross-classified chimpanzees with varying slopes 403 Continuous categories and the Gaussian process 410 Summary 419 Practice 419 Chapter 14. Missing Data and Other Opportunities 423 Measurement error 424 Missing data 431 Summary 439 Practice 439 Chapter 15. Horoscopes 441 Endnotes 445 Bibliography 457 Citation index 465 Topic index 467
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book CEPT Library Faculty of Technology 519.542 McE Available 015654
Total holds: 0

CONTENTS
Preface xi
Audience xi
Teaching strategy xii
How to use this book xii
Installing the rethinking R package xvi
Acknowledgments xvi
Chapter 1. The Golem of Prague 1
Statistical golems 1
Statistical rethinking 4
Three tools for golem engineering 10
Summary 16
Chapter 2. Small Worlds and Large Worlds 19
The garden of forking data 20
Building a model 28
Components of the model 32
Making the model go 37
Summary 45
Practice 45
Chapter 3. Sampling the Imaginary 49
Sampling from a grid-approximate posterior 52
Sampling to summarize 53
Sampling to simulate prediction 61
Summary 68
Practice 69
Chapter 4. Linear Models 71
Why normal distributions are normal 72
A language for describing models 77
A Gaussian model of height 78
Adding a predictor 92
Polynomial regression 110
Summary 115
Practice 115
Chapter 5. Multivariate Linear Models 119
Spurious association 121
Masked relationship 135
When adding variables hurts 141
Categorical variables 152
Ordinary least squares and 1m 159
Summary 162
Practice 162
Chapter 6. Overfitting, Regularization, and Information Criteria 165
The problem with parameters 167
Information theory and model performance 174
Regularization 186
Information criteria 188
Using information criteria 195
Summary 205
Practice 205
Chapter 7. Interactions 209
Building an interaction 211
Symmetry of the linear interaction 223
Continuous interactions 225
Interactions in design formulas 235
Summary 236
Practice 236
Chapter 8. Markov Chain Monte Carlo 241
Good King Markov and His island kingdom 242
Markov chain Monte Carlo 245
Easy HMC: map2stan 247
Care and feeding of your Markov chain 255
Summary 263
Practice 263
Chapter 9. Big Entropy and the Generalized Linear Model 267
Maximum entropy 268
Generalized linear models 280
Maximum entropy priors 288
Summary 289
Chapter 10. Counting and Classification 291
Binomial regression 292
Poisson regression 311
Other count regressions 322
Summary 328
Practice 329
Chapter 11. Monsters and Mixtures 331
Ordered categorical outcomes 331
Zero-inflated outcomes 342
Over-dispersed outcomes 346
Summary , 351
Practice 352
Chapter 12. Multilevel Models 355
Example: Multilevel tadpoles 357
Varying effects and the under fitting/overfitting trade-off 364
More than one type of cluster 370
Multilevel posterior predictions 376
Summary 384
Practice 384
Chapter 13. Adventures in Covariance 387
Varying slopes by construction 389
Example: Admission decisions and gender 398
Example: Cross-classified chimpanzees with varying slopes 403
Continuous categories and the Gaussian process 410
Summary 419
Practice 419
Chapter 14. Missing Data and Other Opportunities 423
Measurement error 424
Missing data 431
Summary 439
Practice 439
Chapter 15. Horoscopes 441
Endnotes 445
Bibliography 457
Citation index 465
Topic index 467

There are no comments on this title.

to post a comment.
Excel To HTML using codebeautify.org Sheet Name :- Location Chart
Location Chart Basement 1 (B1) Class No. 600 - 649, 660 - 699
(B1) :Mezzanine 1 Class No. 700 - 728
(B1) :Mezzanine 2 Class No. 728.1 - 799, 650 - 659, Reference Books, Faculty work
Basement 2 (B2) Class No. 000 - 599, 800-999
Basement 3 (B3) (Please Inquire at the Counter for resources) Theses, Students' works, Bound Journals, Drawings, Atlas, Oversize Books, Rare Books, IS codes, Non-book Materials