Image from Google Jackets

Natural ventilation of buildings : theory, measurement and design

By: Publication details: West Sussex John Wiley & Sons Ltd. 2012Description: xxv,428pISBN:
  • 9780470660355
Subject(s):
DDC classification:
  • 697.92 ETH
Contents:
CONTENTS Chapter 1. INTRODUCTION AND OVERVIEW OF NATURAL VENTILATION DESIGN. 1.1 Aims and scope of the book. 1.2 Natural ventilation in context. 2.2 Advantages and disadvantages of natural ventilation. 1.3 Overview of design. 1.4 Notes on references. Chapter 2. PHYSICAL PROCESSES IN NATURAL VENTILATION. 2.1 Introduction. 2.2 The effect of gravity on ventilation flows. 2.3 Types of flow encountered in ventilation. 2.4 Fluid mechanics – other important concepts and equations. 2.5 Steady and unsteady ventilation. 2.6 Flow through a sudden expansion. 2.7 Dimensional analysis. 2.8 Heat transfer between air and envelope. 2.9 Definitions relating to ventilation rate. 2.10 Errors and uncertainties. 2.11 Mathematical models. 2.12 Boundary conditions. Bibliography. References. Chapter 3. STEADY FLOW CHARACTERISTICS OF OPENINGS. 3.1 Introduction. 3.2 Classification of openings. 3.3 Still-air discharge coefficient. 3.4 Installation effects on Cd. 3.5 Openings in combination. 3.6 Determination of Cd. 3.7 Uncertainties in design calculations. 3.8 Other definitions of discharge coefficient. 3.9 Large (and very large) openings. 3.10 Relevance to design. References. CHAPTER 4. STEADY ENVELOPE FLOW MODELS. 4.1 Introduction. 4.2 Basic theory 4.3 Single- and multi-cell models. 4.4 Simple analytic solutions. 4.5 Non-uniform density. 4.6 Turbulent diffusion. 4.7 Large openings. 4.8 Adventitious openings. 4.9 Explicit method of solution. 4.10 Uncertainties in envelope flow models. 4.11 Combined envelope and thermal models. 4.12 Models for very large openings. 4.13 Relevance to design. References. CHAPTER 5. UNSTEADY ENVELOPE FLOW MODELS. 5.1 Introduction. 5.2 Flow equation. 5.3 Pressure difference across openings. 5.4 Mass conservation equation. 5.5 Envelope flow models. 5.6 Comparisons with measurement. 5.7 Mean flow rates. 5.8 Instantaneous flow rates. 5.9 Unsteady flow models in design. 5.10 Relevance to design. References. Chapter 6. INTERNAL AIR MOTION, ZONAL MODELS AND STRATIFICATION. 6.1 Introduction. 6.2 Governing equations. 6.3 Primary and secondary flows. 6.4 Zonal models. 6.5 Coarse-grid CFD. 6.6 Integrated zonal and envelope models. 6.7 Stratification. 6.8 Relevance to design References. Chapter 7. CONTAMINANT TRANSPORT AND INDOOR AIR QUALITY. 7.1 Introduction. 7.2 Concentration at a point. 7.3 Conservation equations for bounded spaces, envelope models. 7.4 Conservation equations for large unbounded volumes as used in zonal models. 7.5 Analytic relations for concentration at a point. 7.6 Analytic relations for uniform concentration. 7.7 Analytic relations for non-uniform concentration. 7.8 Calculations with CFD, coarse-grid CFD and zonal models. 7.9 Definitions relating to contaminant removal. 7.10 Relevance to design. References. Chapter 8. AGE OF AIR AND VENTILATION EFFICIENCY. 8.1 Introduction. 8.2 Theoretical modelling of age properties at a point. 8.3 Zonal models. 8.4 Ventilation efficiency. 8.5 Analytic relationships. 8.6 Experimental determination of age (using a tracer). 8.7 Unsteady age distributions. 8.8 Relevance to design. References. CHAPTER 9. COMPUTATIONAL FLUID DYNAMICS AND ITS APPLICATIONS. 9.1 Introduction. 9.2 Basics of CFD. 9.3 Important modelling issues. 9.4 Calculation of external wind flow. 9.5 Calculation of internal flows 9.6 Whole-field calculations. 9.7 Other applications. 9.8 Relevance to design. References. Chapter 10. SCALE MODELLING. 10.1 Introduction. 10.2 Requirements for similarity. 10.3 Wind alone. 10.4 Buoyancy alone. 10.5 Wind and buoyancy combined. 10.6 Use of water as the modelling fluid. 10.7 Relevance to design. References. Chapter 11. FULL-SCALE MEASUREMENTS. 11.1 Introduction. 11.2 Laboratory measurements of Cd and effective area. 11.3 Measurement of adventitious leakage using steady pressurisation. 11.4 Unsteady techniques for measurement of low-pressure leakage. 11.5 Field measurements of ventilation rates. 11.6 Other measurements. 11.7 Relevance to design. References. Chapter 12. DESIGN PROCEDURES. 12.1 Introduction. 12.2 Feasibility of natural ventilation (Stage 1). 12.3 Ventilation strategies (Stage 2). 12.4 Envelope design (Stage 3). 12.5 Internal environment (Stage 4). 12.6 Data specification. 12.7 Low-energy cooling systems. 12.8 Control systems. 12.9 Commissioning (Stage 5). 12.10 Concluding remarks. References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book CEPT Library Faculty of Technology 697.92 ETH Available 018826
Total holds: 0

CONTENTS
Chapter 1. INTRODUCTION AND OVERVIEW OF NATURAL VENTILATION DESIGN.
1.1 Aims and scope of the book.
1.2 Natural ventilation in context.
2.2 Advantages and disadvantages of natural ventilation.
1.3 Overview of design.
1.4 Notes on references.

Chapter 2. PHYSICAL PROCESSES IN NATURAL VENTILATION.
2.1 Introduction.
2.2 The effect of gravity on ventilation flows.
2.3 Types of flow encountered in ventilation.
2.4 Fluid mechanics – other important concepts and equations.
2.5 Steady and unsteady ventilation.
2.6 Flow through a sudden expansion.
2.7 Dimensional analysis.
2.8 Heat transfer between air and envelope.
2.9 Definitions relating to ventilation rate.
2.10 Errors and uncertainties.
2.11 Mathematical models.
2.12 Boundary conditions.
Bibliography.
References.

Chapter 3. STEADY FLOW CHARACTERISTICS OF OPENINGS.
3.1 Introduction.
3.2 Classification of openings.
3.3 Still-air discharge coefficient.
3.4 Installation effects on Cd.
3.5 Openings in combination.
3.6 Determination of Cd.
3.7 Uncertainties in design calculations.
3.8 Other definitions of discharge coefficient.
3.9 Large (and very large) openings.
3.10 Relevance to design.
References.

CHAPTER 4. STEADY ENVELOPE FLOW MODELS.
4.1 Introduction.
4.2 Basic theory
4.3 Single- and multi-cell models.
4.4 Simple analytic solutions.
4.5 Non-uniform density.
4.6 Turbulent diffusion.
4.7 Large openings.
4.8 Adventitious openings.
4.9 Explicit method of solution.
4.10 Uncertainties in envelope flow models.
4.11 Combined envelope and thermal models.
4.12 Models for very large openings.
4.13 Relevance to design.
References.

CHAPTER 5. UNSTEADY ENVELOPE FLOW MODELS.
5.1 Introduction.
5.2 Flow equation.
5.3 Pressure difference across openings.
5.4 Mass conservation equation.
5.5 Envelope flow models.
5.6 Comparisons with measurement.
5.7 Mean flow rates.
5.8 Instantaneous flow rates.
5.9 Unsteady flow models in design.
5.10 Relevance to design.
References.

Chapter 6. INTERNAL AIR MOTION, ZONAL MODELS AND STRATIFICATION.
6.1 Introduction.
6.2 Governing equations.
6.3 Primary and secondary flows.
6.4 Zonal models.
6.5 Coarse-grid CFD.
6.6 Integrated zonal and envelope models.
6.7 Stratification.
6.8 Relevance to design
References.

Chapter 7. CONTAMINANT TRANSPORT AND INDOOR AIR QUALITY.
7.1 Introduction.
7.2 Concentration at a point.
7.3 Conservation equations for bounded spaces, envelope models.
7.4 Conservation equations for large unbounded volumes as used in zonal models.
7.5 Analytic relations for concentration at a point.
7.6 Analytic relations for uniform concentration.
7.7 Analytic relations for non-uniform concentration.
7.8 Calculations with CFD, coarse-grid CFD and zonal models.
7.9 Definitions relating to contaminant removal.
7.10 Relevance to design.
References.

Chapter 8. AGE OF AIR AND VENTILATION EFFICIENCY.
8.1 Introduction.
8.2 Theoretical modelling of age properties at a point.
8.3 Zonal models.
8.4 Ventilation efficiency.
8.5 Analytic relationships.
8.6 Experimental determination of age (using a tracer).
8.7 Unsteady age distributions.
8.8 Relevance to design.
References.

CHAPTER 9. COMPUTATIONAL FLUID DYNAMICS AND ITS APPLICATIONS.
9.1 Introduction.
9.2 Basics of CFD.
9.3 Important modelling issues.
9.4 Calculation of external wind flow.
9.5 Calculation of internal flows
9.6 Whole-field calculations.
9.7 Other applications.
9.8 Relevance to design.
References.

Chapter 10. SCALE MODELLING.
10.1 Introduction.
10.2 Requirements for similarity.
10.3 Wind alone.
10.4 Buoyancy alone.
10.5 Wind and buoyancy combined.
10.6 Use of water as the modelling fluid.
10.7 Relevance to design.
References.

Chapter 11. FULL-SCALE MEASUREMENTS.
11.1 Introduction.
11.2 Laboratory measurements of Cd and effective area.
11.3 Measurement of adventitious leakage using steady pressurisation.
11.4 Unsteady techniques for measurement of low-pressure leakage.
11.5 Field measurements of ventilation rates.
11.6 Other measurements.
11.7 Relevance to design.
References.

Chapter 12. DESIGN PROCEDURES.
12.1 Introduction.
12.2 Feasibility of natural ventilation (Stage 1).
12.3 Ventilation strategies (Stage 2).
12.4 Envelope design (Stage 3).
12.5 Internal environment (Stage 4).
12.6 Data specification.
12.7 Low-energy cooling systems.
12.8 Control systems.
12.9 Commissioning (Stage 5).
12.10 Concluding remarks.
References.

There are no comments on this title.

to post a comment.
Excel To HTML using codebeautify.org Sheet Name :- Location Chart
Location Chart Basement 1 (B1) Class No. 600 - 649, 660 - 699
(B1) :Mezzanine 1 Class No. 700 - 728
(B1) :Mezzanine 2 Class No. 728.1 - 799, 650 - 659, Reference Books, Faculty work
Basement 2 (B2) Class No. 000 - 599, 800-999
Basement 3 (B3) (Please Inquire at the Counter for resources) Theses, Students' works, Bound Journals, Drawings, Atlas, Oversize Books, Rare Books, IS codes, Non-book Materials