Image from Google Jackets

Strength of materials

By: Contributor(s): Material type: TextTextPublication details: New Delhi CBS Publishers & Distributors 2Edition: Ed. 2Description: vi,641,iipISBN:
  • 8123906579
DDC classification:
  • 620.112 BAS
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Notes Date due Barcode Item holds
Book CEPT Library Faculty of Technology 620.112 BAS Available Status:Catalogued;Bill No:39713 004108
Total holds: 0

CONTENTS Strength of Materials CHAPTER 1.Simple Stresses and Strains 1-83 1.1. Definition of Stress and Strain 1.2. Elasticity 1.3. Hooke's Law 1.4. Stress-strain diagram 1.5. Factors of Safety 1.6. State of Simple Shear 1.7. Modulus of rigidity 1.8. Bulk Modulus 1.9. Poisson's Ratio 1.10- Relation Young's Modulus, Bulk Modulus and Modulus of Rigidity 1.11. Bars of varying sections 1.12 Stresses due to self weight 1.13. Compound bars 1.14. Tempe-stresses 1.15. Strain cnergyand Impact Load. CHAPTER 2. Compound Stresses and Strains 84-145 2.1. Introduction 2.2 Stresses on an inclined plane 2 3. Element subjected to two normal stresses 2.4. Ellipse of stress 2.5. General two-dimensional stress system 2.6. Principal stresses and principal planes 2.7. Motor's Circle of stress 2.8 Analysis of Strain 2.9. Mohr's strain circle 2.10. Strain rosettes CI,AITFR 3.Bending Stresses in Bi'ams 146-212 3.1. Theory of Simple Bending 3.2. Neutral Axis 3.3. Moment of Resistance (MR) 3.4. Secthn Modulus 3.5. Flutched Beams 3.6. Beams of Uniform Strength 3.7. Shearing Stresses in Beams 3.8. Principal Stresses at a point in a Beam 213-355 CHAPTER 4.Deflection of Beams213-355 4 I. Introduction 4.2. Circular bending 4.3. Diffe-rential equation for deflection curve 4.4. Double Integration method 4.5. Macaulay's method 4.6 Deflection by strain energy method 4.7. Moment area method 4.8. Deflection due to shear 4.9. Propped cantilevers and propped beams 4.10. Deflection due to impact CHAPTER 5. Torsion 356-442 5.1. Introduction 5.2. Pure Torsion 5 3 Relation between twisting moment shear stress and angle of twist 5.4. Polar Modulus 5.5. Torsional Rigidity 5.6. Power transmitted by a Shaft 5.7. Strain energy in Torsion 5.8. Combined Bending Torsion 5 9. quivalent Bending Moment 5.10. Equivalent Torque 5.11. Composite Shafts 5.12. Torsion of Tapering Shafts 5.13. Torsion of Statically In-determinate Members 5-14. Springs 5.15 Close-Coiled Helical Spring 5.16. Springs in Series and Parallels 5.17. Open-Coiled Helical Springs 5.18. Leaf, Laminated or Carriage Springs 5.19. Quarter Elliptic Springs 5.20. Close-Coiled Conical Springs 5.21. Flat Spiral Springs CHAPTER 6. Fixed and Continuous Beams 443-510 6.1 Fixed beams 6.2. Moment-area method for fixed beams 6.3. Macaulay's method for fixed beams 6.4. Effect of sinking of supports 6.5. Fixed beam subjected to a couple 6.6. Continuous beams CHAPTER 7. Columns aafl Struts 511-574 7.1. Definitions 7.2. Axially loaded short columns 7.3. Eccentrically loaded short columns 7.4. Axially loaded slender columns 7-5. Limitations of the Euler's formula 7.6. Intermediate columns 7.7. Emperical formulae for the columns design 7.8.Eccentrically loaded long columns 7.9. Columns with initial curvature 7.10. Laterally loaded struts 7.11. Laterally loaded ties 7.12. Prof Perry-Robertson formulae 7.13. Built-up columns CHAPTER 8. Thin and Thick Cylinders 575-620 Thin Cylindrical and Spherical Shells 8.1. Introduction 8.2. Thin Cylindrical Shell 8.3. Change in Volumeof CylindricalShell 8.4. Riveted Cylinders 8.5. WirewoundThin Cylinders 8.6. Thin Spherical Shell 8.7. Change in Volume of Spherical Shell Thick Cylindrical and Spherical Shells 8.8. Introduction 8.9 Thick Cylinder-Lame's Theory 8.10. Compound Cylinders 8.11. Shrinkage Allowance 8.12. Thick Spherical Shells CHAPTER 9. Theories of Elastic Failure 621-643 9.1. Introduction 9.2. Maximum principal stress theory 9.3. Maximum shearing stress theory 9.4- Strain energy theory 9.5. Shear strain energy theory 9-6. Maximum strain theory 9.7. Octahedral shear stress theory.

There are no comments on this title.

to post a comment.
Excel To HTML using codebeautify.org Sheet Name :- Location Chart
Location Chart Basement 1 (B1) Class No. 600 - 649, 660 - 699
(B1) :Mezzanine 1 Class No. 700 - 728
(B1) :Mezzanine 2 Class No. 728.1 - 799, 650 - 659, Reference Books, Faculty work
Basement 2 (B2) Class No. 000 - 599, 800-999
Basement 3 (B3) (Please Inquire at the Counter for resources) Theses, Students' works, Bound Journals, Drawings, Atlas, Oversize Books, Rare Books, IS codes, Non-book Materials