Bridge design : concepts and analysis (Record no. 69971)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 14803 a2200169 4500 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9780470843635 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 624.2 |
Item number | REI |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Reis, Antonio J. |
245 ## - TITLE STATEMENT | |
Title | Bridge design : concepts and analysis |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc | John Wiley & Sons Ltd. |
Place of publication, distribution, etc | New Jersey |
Date of publication, distribution, etc | 2019 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xvi,531p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | CONTENTS<br/>About the Authors xiii<br/>Preface xv<br/>Acknowledgements xvii<br/>1 Introduction 1<br/>1.1 Generalities 1<br/>1.2 Definitions and Terminology 1<br/>1.3 Bridge Classification 4<br/>1.4 Bridge Typology 6<br/>1.5 Some Historical References 16<br/>1.5.1 Masonry Bridges 16<br/>1.5.2 Timber Bridges 18<br/>1.5.3 Metal Bridges 18<br/>1.5.4 Reinforced and Prestressed Concrete Bridges 24<br/>1.5.5 Cable Supported Bridges 28<br/>References 30<br/>2 Bridge Design: Site Data and Basic Conditions 31<br/>2.1 Design Phases and Methodology 31<br/>2.2 Basic Site Data 32<br/>2.2.1 Generalities 32<br/>2.2.2 Topographic Data 32<br/>2.2.3 Geological and Geotechnical Data 35<br/>2.2.4 Hydraulic Data 36<br/>2.2.5 Other Data 38<br/>2.3 Bridge Location. Alignment, Bridge Length and Hydraulic Conditions 38<br/>2.3.1 The Horizontal and Vertical Alignments 42<br/>2.3.2 The Transverse Alignment 46<br/>2.4 Elements Integrated in Bridge Decks 49<br/>2.4.1 Road Bridges 49<br/>2.4.1.1 Surfacing and Deck Waterproofing 50<br/>2.4.1.2 Walkways, Parapets and Handrails 50<br/>2.4.1.3 Fascia Beams 53<br/>2.4.1.4 Drainage System 54<br/>2.4.1.5 Lighting System 55<br/>2.4.1.6 Expansion Joints 55<br/>2.4.2 Railway Decks 58<br/>2.4.2.1 Track System 59<br/>2.4.2.2 Power Traction System (Catenary System) 61<br/>2.4.2.3 Footways, Parapets/Handrails, Drainage and Lighting Systems 61<br/>References 61<br/>3 Actions and Structural Safety 63<br/>3.1 Types of Actions and Limit State Design 63<br/>3.2 Permanent Actions 65<br/>3.3 Highway Traffic Loading – Vertical Forces 68<br/>3.4 Braking, Acceleration and Centrifugal Forces in Highway Bridges 72<br/>3.5 Actions on Footways or Cycle Tracks and Parapets, of Highway Bridges 74<br/>3.6 Actions for Abutments and Walls Adjacent to Highway Bridges 75<br/>3.7 Traffic Loads for Railway Bridges 76<br/>3.7.1 General 76<br/>3.7.2 Load Models 76<br/>3.8 Braking, Acceleration and Centrifugal Forces in Railway Bridges: Nosing Forces 77<br/>3.9 Actions on Maintenance Walkways and Earth Pressure Effects for Railway Bridges 78<br/>3.10 Dynamic Load Effects 79<br/>3.10.1 Basic Concepts 79<br/>3.10.2 Dynamic Effects for Railway Bridges 82<br/>3.11 Wind Actions and Aerodynamic Stability of Bridges 84<br/>3.11.1 Design Wind Velocities and Peak Velocities Pressures 84<br/>3.11.2 Wind as a Static Action on Bridge Decks and Piers 89<br/>3.11.3 Aerodynamic Response: Basic Concepts 91<br/>3.11.3.1 Vortex Shedding 94<br/>3.11.3.2 Divergent Amplitudes: Aerodynamic Instability 95<br/>3.12 Hydrodynamic Actions 98<br/>3.13 Thermal Actions and Thermal Effects 99<br/>3.13.1 Basic Concepts 99<br/>3.13.2 Thermal Effects 102<br/>3.13.3 Design Values 107<br/>3.14 Shrinkage, Creep and Relaxation in Concrete Bridges 109<br/>3.15 Actions Due to Imposed Deformations. Differential Settlements 117<br/>3.16 Actions Due to Friction in Bridge Bearings 119<br/>3.17 Seismic Actions 119<br/>3.17.1 Basis of Design 119<br/>3.17.2 Response Spectrums for Bridge Seismic Analysis 121<br/>3.18 Accidental Actions 124<br/>3.19 Actions During Construction 124<br/>3.20 Basic Criteria for Bridge Design 125<br/>References 125<br/>4 Conceptual Design and Execution Methods 129<br/>4.1 Concept Design: Introduction 129<br/>4.2 Span Distribution and Deck Continuity 131<br/>4.2.1 Span Layout 131<br/>4.2.2 Deck Continuity and Expansion Joints 132<br/>4.3 The Influence of the Execution Method 134<br/>4.3.1 A Prestressed Concrete Box Girder Deck 134<br/>4.3.2 A Steel‐Concrete Composite Steel Deck 136<br/>4.3.3 Concept Design and Execution: Preliminary Conclusions 136<br/>4.4 Superstructure: Concrete Bridges 138<br/>4.4.1 Options for the Bridge Deck 138<br/>4.4.2 The Concrete Material – Main Proprieties 139<br/>4.4.2.1 Concrete 139<br/>4.4.2.2 Reinforcing Steel 140<br/>4.4.2.3 Prestressing Steel 140<br/>4.4.3 Slab and Voided Slab Decks 142<br/>4.4.4 Ribbed Slab and Slab‐Girder Decks 144<br/>4.4.5 Precasted Slab‐Girder Decks 152<br/>4.4.6 Box Girder Decks 155<br/>4.5 Superstructure: Steel and Steel‐Concrete Composite Bridges 160<br/>4.5.1 Options for Bridge Type: Plated Structures 160<br/>4.5.2 Steels for Metal Bridges and Corrosion Protection 166<br/>4.5.2.1 Materials and Weldability 166<br/>4.5.2.2 Corrosion Protection 172<br/>4.5.3 Slab Deck: Concrete Slabs and Orthotropic Plates 173<br/>4.5.3.1 Concrete Slab Decks 174<br/>4.5.3.2 Steel Orthotropic Plate Decks 176<br/>4.5.4 Plate Girder Bridges 179<br/>4.5.4.1 Superstructure Components 179<br/>4.5.4.2 Preliminary Design of the Main Girders 182<br/>4.5.4.3 Vertical Bracing System 188<br/>4.5.4.4 Horizontal Bracing System 191<br/>4.5.5 Box Girder Bridges 192<br/>4.5.5.1 General 192<br/>4.5.5.2 Superstructure Components 193<br/>4.5.5.3 Pre‐Design of Composite Box Girder Sections 196<br/>4.5.5.4 Pre‐Design of Diaphragms or Cross Frames 199<br/>4.5.6 Typical Steel Quantities 201<br/>4.6 Superstructure: Execution Methods 202<br/>4.6.1 General Aspects 202<br/>4.6.2 Execution Methods for Concrete Decks 203<br/>4.6.2.1 General 203<br/>4.6.2.2 Scaffoldings and Falseworks 203<br/>4.6.2.3 Formwork Launching Girders 206<br/>4.6.2.4 Incremental Launching 206<br/>4.6.2.5 Cantilever Construction 212<br/>4.6.2.6 Precasted Segmental Cantilever Construction 221<br/>4.6.2.7 Other Methods 222<br/>4.6.3 Erection Methods for Steel and Composite Bridges 223<br/>4.6.3.1 Erection Methods, Transport and Erection Joints 223<br/>4.6.3.2 Erection with Cranes Supported from the Ground 224<br/>4.6.3.3 Incremental Launching 224<br/>4.6.3.4 Erection by the Cantilever Method 227<br/>4.6.3.5 Other Methods 227<br/>4.7 Substructure: Conceptual Design and Execution Methods 229<br/>4.7.1 Elements and Functions 229<br/>4.7.2 Bridge Piers 229<br/>4.7.2.1 Structural Materials and Pier Typology 229<br/>4.7.2.2 Piers Pre‐Design 232<br/>4.7.2.3 Execution Method of the Deck and Pier Concept Design 233<br/>4.7.2.4 Construction Methods for Piers 240<br/>4.7.3 Abutments 241<br/>4.7.3.1 Functions of the Abutments 241<br/>4.7.3.2 Abutment Concepts and Typology 241<br/>4.7.4 Bridge Foundations 245<br/>4.7.4.1 Foundation Typology 245<br/>4.7.4.2 Direct Foundations 245<br/>4.7.4.3 Pile Foundations 246<br/>4.7.4.4 Special Bridge Foundations 247<br/>4.7.4.5 Bridge Pier Foundations in Rivers 250<br/>References 251<br/>5 Aesthetics and Environmental Integration 255<br/>5.1 Introduction 255<br/>5.2 Integration and Formal Aspects 256<br/>5.3 Bridge Environment 256<br/>5.4 Shape and Function 258<br/>5.5 Order and Continuity 260<br/>5.6 Slenderness and Transparency 262<br/>5.7 Symmetries, Asymmetries and Proximity with Other Bridges 266<br/>5.8 Piers Aesthetics 267<br/>5.9 Colours, Shadows, and Detailing 268<br/>5.10 Urban Bridges 272<br/>References 277<br/>6 Superstructure: Analysis and Design 279<br/>6.1 Introduction 279<br/>6.2 Structural Models 280<br/>6.3 Deck Slabs 283<br/>6.3.1 General 283<br/>6.3.2 Overall Bending: Shear Lag Effects 283<br/>6.3.3 Local Bending Effects: Influence Surfaces 287<br/>6.3.4 Elastic Restraint of Deck Slabs 295<br/>6.3.5 Transverse Prestressing of Deck Slabs 297<br/>6.3.6 Steel Orthotropic Plate Decks 300<br/>6.4 Transverse Analysis of Bridge Decks 301<br/>6.4.1 Use of Influence Lines for Transverse Load Distribution 301<br/>6.4.2 Transverse Load Distribution Coefficients for Load Effects 302<br/>6.4.3 Transverse Load Distribution Methods 303<br/>6.4.3.1 Rigid Cross Beam Methods: Courbon Method 304<br/>6.4.3.2 Transverse Load Distribution on Cross Beams 307<br/>6.4.3.3 Extensions of the Courbon Method: Influence of Torsional Stiffness of Main Girders and Deformability of Cross Beams 307<br/>6.4.3.4 The Orthotropic Plate Approach 308<br/>6.4.3.5 Other Transverse Load Distribution Methods 313<br/>6.5 Deck Analysis by Grid and FEM Models 313<br/>6.5.1 Grid Models 313<br/>6.5.1.1 Fundamentals 313<br/>6.5.1.2 Deck Modelling 315<br/>6.5.1.3 Properties of Beam Elements in Grid Models 317<br/>6.5.1.4 Limitations and Extensions of Plane Grid Modelling 318<br/>6.5.2 FEM Models 318<br/>6.5.2.1 Fundamentals 318<br/>6.5.2.2 FEM for Analysis of Bridge Decks 323<br/>6.6 Longitudinal Analysis of the Superstructure 329<br/>6.6.1 Generalities – Geometrical Non‐Linear Effects: Cables and Arches 329<br/>6.6.2 Frame and Arch Effects 332<br/>6.6.3 Effect of Longitudinal Variation of Cross Sections 334<br/>6.6.4 Torsion Effects in Bridge Decks – Non‐Uniform Torsion 336<br/>6.6.5 Torsion in Steel‐Concrete Composite Decks 343<br/>6.6.5.1 Composite Box Girder Decks 343<br/>6.6.5.2 Composite Plate Girder Decks 345<br/>6.6.5.3 Transverse Load Distribution in Open Section Decks 348<br/>6.6.6 Curved Bridges 350<br/>6.6.6.1 Statics of Curved Bridges 350<br/>6.6.6.2 Simply Supported Curved Bridge Deck 352<br/>6.6.6.3 Approximate Method 353<br/>6.6.6.4 Bearing System and Deck Elongations 353<br/>6.7 Influence of Construction Methods on Superstructure Analysis 355<br/>6.7.1 Span by Span Erection of Prestressed Concrete Decks 356<br/>6.7.2 Cantilever Construction of Prestressed Concrete Decks 357<br/>6.7.3 Prestressed Concrete Decks with Prefabricated Girders 360<br/>6.7.4 Steel‐Concrete Composite Decks 361<br/>6.8 Prestressed Concrete Decks: Design Aspects 364<br/>6.8.1 Generalities 364<br/>6.8.2 Design Concepts and Basic Criteria 364<br/>6.8.3 Durability 364<br/>6.8.4 Concept of Partial Prestressed Concrete (PPC) 364<br/>6.8.5 Particular Aspects of Bridges Built by Cantilevering 365<br/>6.8.6 Ductility and Precasted Segmental Construction 366<br/>6.8.6.1 Internal and External Prestressing 367<br/>6.8.7 Hyperstatic Prestressing Effects 367<br/>6.8.8 Deflections, Vibration and Fatigue 368<br/>6.9 Steel and Composite Decks 373<br/>6.9.1 Generalities 373<br/>6.9.2 Design Criteria for ULS 373<br/>6.9.3 Design Criteria for SLS 375<br/>6.9.3.1 Stress Limitations and Web Breathing 376<br/>6.9.3.2 Deflection Limitations and Vibrations 377<br/>6.9.4 Design Criteria for Fatigue Limit State 377<br/>6.9.5 Web Design of Plate and Box Girder Sections 383<br/>6.9.5.1 Web Under in Plane Bending and Shear Forces 383<br/>6.9.5.2 Flange Induced Buckling 385<br/>6.9.5.3 Webs Under Patch Loading 387<br/>6.9.5.4 Webs under Interaction of Internal Forces 389<br/>6.9.6 Transverse Web Stiffeners 390<br/>6.9.7 Stiffened Panels in Webs and Flanges 391<br/>6.9.8 Diaphragms 394<br/>6.10 Reference to Special Bridges: Bowstring Arches and Cable‐Stayed Bridges 395<br/>6.10.1 Generalities 395<br/>6.10.2 Bowstring Arch Bridges 396<br/>6.10.2.1 Geometry, Slenderness and Stability 396<br/>6.10.2.2 Hanger System and Anchorages 402<br/>6.10.2.3 Analysis of the Superstructure 403<br/>6.10.3 Cable‐Stayed Bridges 404<br/>6.10.3.1 Basic Concepts 404<br/>6.10.3.2 Total and Partial Adjustment Staying Options 408<br/>6.10.3.3 Deck Slenderness, Static and Aerodynamic Stability 411<br/>6.10.3.4 Stays and Stay Cable Anchorages 414<br/>6.10.3.5 Analysis of the Superstructure 416<br/>References 418<br/>7 Substructure: Analysis and Design 423<br/>7.1 Introduction 423<br/>7.2 Distribution of Forces Between Piers and Abutments 423<br/>7.2.1 Distribution of a Longitudinal Force 423<br/>7.2.2 Action Due to Imposed Deformations 424<br/>7.2.3 Distribution of a Transverse Horizontal Force 425<br/>7.2.4 Effect of Deformation of Bearings and Foundations 429<br/>7.3 Design of Bridge Bearings 430<br/>7.3.1 Bearing Types 430<br/>7.3.2 Elastomeric Bearings 430<br/>7.3.3 Neoprene‐Teflon Bridge Bearings 434<br/>7.3.4 Elastomeric ‘Pot Bearings’ 435<br/>7.3.5 Metal Bearings 437<br/>7.3.6 Concrete Hinges 439<br/>7.4 Reference to Seismic Devices 441<br/>7.4.1 Concept 441<br/>7.4.2 Seismic Dampers 441<br/>7.5 Abutments: Analysis and Design 444<br/>7.5.1 Actions and Design Criteria 444<br/>7.5.2 Front and Wing Walls 446<br/>7.5.3 Anchored Abutments 448<br/>7.6 Bridge Piers: Analysis and Design 449<br/>7.6.1 Basic Concepts 449<br/>7.6.1.1 Pre‐design 449<br/>7.6.1.2 Slenderness and Elastic Critical Load 449<br/>7.6.1.3 The Effect of Geometrical Initial Imperfections 450<br/>7.6.1.4 The Effect of Cracking in Concrete Bridge Piers 450<br/>7.6.1.5 Bridge Piers as ‘Beam Columns’ 451<br/>7.6.1.6 The Effect of Imposed Displacements 452<br/>7.6.1.7 The Overall Stability of a Bridge Structure 453<br/>7.6.1.8 Design Bucking Length of Bridge Piers 453<br/>7.6.2 Elastic Analysis of Bridge Piers 454<br/>7.6.3 Elastoplastic Analysis of Bridge Piers: Ultimate Resistance 459<br/>7.6.4 Creep Effects on Concrete Bridge Piers 465<br/>7.6.5 Analysis of Bridge Piers by Numerical Methods 465<br/>7.6.6 Overall Stability of a Bridge Structure 471<br/>References 473<br/>8 Design Examples: Concrete and Composite Options 475<br/>8.1 Introduction 475<br/>8.2 Basic Data and Bridge Options 475<br/>8.2.1 Bridge Function and Layout 475<br/>8.2.2 Typical Deck Cross Sections 476<br/>8.2.3 Piers, Abutments and Foundations 477<br/>8.2.4 Materials Adopted 477<br/>8.2.4.1 Prestressed Concrete Deck 478<br/>8.2.4.2 Steel‐concrete Composite Deck 481<br/>8.2.5 Deck Construction 481<br/>8.3 Hazard Scenarios and Actions 481<br/>8.3.1 Limit States and Structural Safety 482<br/>8.3.2 Actions 482<br/>8.3.2.1 Permanent Actions and Imposed Deformations 482<br/>8.3.2.2 Variable Actions 484<br/>8.4 Prestressed Concrete Solution 486<br/>8.4.1 Preliminary Design of the Deck 486<br/>8.4.2 Structural Analysis and Slab Checks 486<br/>8.4.3 Structural Analysis of the Main Girders 492<br/>8.4.3.1 Traffic Loads: Transverse and Longitudinal Locations 493<br/>8.4.3.2 Internal Forces 497<br/>8.4.3.3 Prestressing Layout and Hyperstatic Effects 497<br/>8.4.3.4 Influence of the Construction Stages 498<br/>8.4.4 Structural Safety Checks: Longitudinal Direction 498<br/>8.4.4.1 Decompression Limit State – Prestressing Design 498<br/>8.4.4.2 Ultimate Limit States – Bending and Shear Resistance 501<br/>8.5 Steel–Concrete Composite Solution 502<br/>8.5.1 Preliminary Design of the Deck 502<br/>8.5.2 Structural Analysis and Slab Design Checks 503<br/>8.5.3 Structural Analysis of the Main Girders 503<br/>8.5.3.1 Traffic Loads Transverse and Longitudinal Positioning 504<br/>8.5.3.2 Internal Forces 505<br/>8.5.3.3 Shrinkage Effects 505<br/>8.5.3.4 Imposed Deformation Effect 506<br/>8.5.3.5 Influence of the Construction Stages 506<br/>8.5.4 Safety Checks: Longitudinal Direction 507<br/>8.5.4.1 Ultimate Limit States – Bending and Shear Resistance 507<br/>8.5.4.2 Serviceability Limit States – Stresses and Crack Widths Control 509<br/>References 510<br/>Annex A: Buckling and Ultimate Strength of Flat Plates 511<br/>A.1 Critical Stresses and Buckling Modes of Flat Plates 511<br/>A.1.1 Plate Simply Supported along the four Edges and under a Uniform Compression (ψ = 1) 511<br/>A.1.2 Bending of Long Rectangular Plates Supported at both Longitudinal Edges or with a Free Edge 513<br/>A.1.3 Buckling of Rectangular Plates under Shear 513<br/>A.2 Buckling of Stiffened Plates 514<br/>A.2.1 Plates with One Longitudinal Stiffener at the Centreline under Uniform Compression 515<br/>A.2.2 Plate with Two Stiffeners under Uniform Compression 516<br/>A.2.3 Plates with Three or More Longitudinal Stiffeners 517<br/>A.2.4 Stiffened Plates under Variable Compression. Approximate Formulas 518<br/>A.3 Post‐Buckling Behaviour and Ultimate Strength of Flat Plates 518<br/>A.3.1 Effective Width Concept 519<br/>A.3.2 Effective Width Formulas 520<br/>References 523<br/>Index 525<br/><br/> |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Oliveira Pedro, Jose J. |
890 ## - Country | |
Country | USA |
891 ## - Topic | |
Topic | FA |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Withdrawn status | Home library | Current library | Date acquired | Source of acquisition | Cost, normal purchase price | Full call number | Barcode | Date last seen | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Faculty of Architecture | CEPT Library | CEPT Library | 12/10/2022 | Books India | 11184.00 | 624.2 REI | 024094 | 05/11/2022 | 13157.23 | 12/10/2022 | Reference Books |