Automated detection and recognition of highway road marking with computer vision and deep learning (Softcopy is also available) (Record no. 68378)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 02192nam a22001817a 4500 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | MG TH-0195 |
Item number | KHA |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | khan, Mehreen (PG180535) |
245 ## - TITLE STATEMENT | |
Title | Automated detection and recognition of highway road marking with computer vision and deep learning (Softcopy is also available) |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Date of publication, distribution, etc | 2020 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | ix,44p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | Table of contents <br/>Certificate of Original Authorship i<br/>Certificate of Dissertation - Advisor’s consent iii<br/>Certificate of Dissertation - Program Chair v<br/>Acknowledgments vii<br/>Abstract ix<br/>List of figures xiii<br/>List of tables xvii<br/>1 Chapter I: Introduction 1<br/>1.1 Background1<br/>1.2 Limitations 2<br/>1.3 Aims and Objectives2<br/>1.4 Deliverables 2<br/>1.5 Thesis Outline 3<br/>2 Chapter II: Related Work4<br/>2.1 Image Transformations4<br/>2.1.1 OpenCV Library5<br/>2.1.2 Pre-processing and Post-processing 7<br/>2.1.3 Noise Reduction and Signal to Noise Ratio (SNR) 8<br/>2.2 Road Marking 8<br/>2.2.1 Types of Road Marking 9<br/>2.3 Road Lane Detection 10<br/>2.3.1 Types of Lanes 11<br/>2.4 Advanced Driving Assistance System (ADAS)12<br/>2.5 Convolutional Neural Networks 13<br/>2.5.1 A Classic CNN: 13<br/>3 Chapter III: Working Methodology16<br/>3.1 Research Methodology16<br/>3.1.1 System Architecture 16<br/>3.1.2 Data Collection 17<br/>3.2 Image Processing 17<br/>3.2.1 Region of Interest (ROI)17<br/>3.2.2 Thresholding 18<br/>3.2.3 Canny Edge Detection Method19<br/>3.2.4 Hough Line Transform Method 21<br/>3.3 Road Lane Detection23<br/>3.3.1 Camera Calibration 23<br/>3.3.2 Perspective Transformation 24<br/>3.3.3 Color Segmentation and Thresholding26<br/>3.4 Lane Curve Fitting 27<br/>3.4.1 Lane Curvature28<br/>3.4.2 Sliding Window Method 28<br/>3.5 Recognition29<br/>3.5.1 Feature Recognition Methods29<br/>3.6 Tracking 30<br/>3.6.1 VSLAM 30<br/>3.7 Vanishing Point 31<br/>3.8 RANSAC31<br/>3.9 Evaluation32<br/>4 Chapter IV: Experimental Results 33<br/>4.1 Model I 33<br/>4.1.1 Working 33<br/>4.2 Model II35<br/>4.2.1 Working 35<br/>5 Chapter V: Conclusion 37<br/>5.1 Way Forward37<br/>References xli<br/>Appendix 1: XYZ xliii<br/>Appendix 2: XYZ45<br/>Plagiarism Report Copy46 |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Upadhyaya, Ashish (Guide) |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Shahdadpuri, Suresh (Guide) |
890 ## - Country | |
Country | India |
891 ## - Topic | |
Topic | 2018 Batch |
891 ## - Topic | |
Topic | FT-PG |
891 ## - Topic | |
Topic | M.Sc. Geomatics |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Withdrawn status | Home library | Current library | Date acquired | Source of acquisition | Full call number | Barcode | Date last seen | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Faculty of Technology | CEPT Library | CEPT Library | 01/02/2021 | Faculty of Technology | MG TH-0195 KHA | 022654 | 01/02/2021 | 01/02/2021 | Thesis |