Deformation and maximum axial strain of slip weld lap joints in buried pipeline during seismic activity (Also available on CD) (Record no. 54767)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 04835nam a2200181Ia 4500 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 180731s9999||||xx |||||||||||||| ||und|| |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | SD TH-0206 |
Item number | ABI |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Abinaya, N. (PT400114) |
245 #0 - TITLE STATEMENT | |
Title | Deformation and maximum axial strain of slip weld lap joints in buried pipeline during seismic activity (Also available on CD) |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Date of publication, distribution, etc | 2018 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | iv,76p.,CD-ROM |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | CONTENTS<br/>1 INTRODUCTION 9<br/>1.1 GENERAL 9<br/>1.2 APPLICATION 9<br/>1.3 NEED OF PRESENT STUDY 10<br/>1.4 OBJECTIVE OF THE DISSERTATION 10<br/>1.5 SCOPE OF THE DISSERTATION 11<br/>1.6 LIMITATIONS OF THE STUDY 11<br/>1.7 ORGANIZATION OF THE DISSERTATION 11<br/>2 LITERATURE REVIEW 13<br/>2.1 GENERAL 13<br/>2.2 TECHNICAL PAPERS 13<br/>2.3 GUIDELINES AND HANDBOOKS 16<br/>2.4 TEXTBOOKS 17<br/>2.5 CODES 17<br/>3 STEEL PIPELINES - A GENERAL INTRODUCTION 18<br/>3.1 UNDERGROUND CONDUITS 18<br/>3.2 SALIENT PROPERTIES OF STEEL PIPE 18<br/>3.2.1 Strength 19<br/>3.2.2 Ease of installation 19<br/>3.2.3 High flow capacity 19<br/>3.2.4 Leak resistance 20<br/>3.2.5 Long service life 20<br/>3.2.6 Reliability and versatility 20<br/>3.2.7 Economy 21<br/>3.3 ADVANTAGES OF STEEL PIPE AS PIPELINE MATERIAL 21<br/>3.4 CRITERIA FOR SELECTING BURIED STEEL PIPE 21<br/>3.5 STRENGTH OF MATERIAL 21<br/>3.6 CLASSIFICATION OF PIPING MATERIAL 22<br/>3.7 PIPELINE ALIGNMENT 22<br/>3.8 SOIL INVESTIGATION 23<br/>3.9 SLIP WELD LAP JOINT 23<br/>3.10 FAILURE OF PIPELINES DUE TO EARTHQUAKE 24<br/>3.10.1 Introduction 24<br/>3.10.2 Failure modes in buried pipelines 24<br/>3.11 FAILURE PATTERN AT THE JOINTS 26<br/>3.11.1 Axial pull out 26<br/>3.11.2 Crushing of bell and spigot joints 26<br/>3.11.3 Flanged joint failure 27<br/>3.11.4 Circumferential flexural failure and joint rotation 27<br/>3.12 FAILURE OF PIPELINES FROM PAST EARTHQUAKES 28<br/>3.12.1 San Fernando Earthquake (1971) 28<br/>3.12.2 Landers and Big Bear Earthquakes (1992): 29<br/>3.12.3 Northridge Earthquake (1994): 29<br/>3.12.4 Kocaeli, Turkey Earthquake (1999) 30<br/>3.12.5 ChiāChi Earthquake (1999): 31<br/>4 THEORETICAL FORMULATION 32<br/>4.1 VALIDATION STUDY 32<br/>4.1.1 Introduction 32<br/>4.1.2 Validation model 32<br/>4.1.3 Pipe dimensions 32<br/>4.1.4 Material properties 32<br/>4.2 LOADING 33<br/>4.3 SOIL PIPE INTERACTION 34<br/>4.3.1 Assigning Soil Springs to Model Pipe 34<br/>4.4 RESULTS FROM THE ANALYSIS AND COMPARISON WITH THE<br/>LITERATURE 36<br/>4.5 STEP BY STEP PROCEDURE 37<br/>4.6 SELECTION OF PIPE SAMPLE FOR STUDY 38<br/>4.6.1 Geometric specifications 38<br/>4.6.2 Chemical composition 40<br/>4.6.3 Mechanical properties 40<br/>4.6.4 Operating pressure 41<br/>4.7 RESPONSE SPECTRUM METHOD OF ANALYSIS 41<br/>4.7.1 Introduction 41<br/>4.7.2 Response Spectra 41<br/>4.7.3 Factor Influencing Response Spectra 42<br/>4.7.4 Modal Combination Rules 42<br/>5 LOADING 44<br/>5.1 GENERAL 44<br/>5.2 BEDDING OF PIPE 44<br/>5.2.1 Bedding angle 45<br/>5.3 TYPES OF INSTALLATION CONDITIONS 46<br/>5.3.1 Trench condition: 46<br/>5.3.2 Embankment condition 46<br/>5.4 ASSUMPTIONS FOR CALCULATION OF LOAD ACTING ON THE PIPES ...47<br/>5.5 CALCULATION OF LOADS 47<br/>5.5.1 Vertical earth load 47<br/>5.5.2 Weight of soil calculation 49<br/>5.5.3 Weight of Water (WW) 50<br/>5.5.4 Surface live loads 50<br/>5.5.5 Live load calculation 51<br/>6 SOIL PIPE INTERACTION 52<br/>6.1 GENERAL 52<br/>6.2 MODELING OF SOIL 52<br/>6.3 MODELING OF SEGMENTED PIPELINE 53<br/>6.4 SOIL SPRING REPRESENTATION 54<br/>6.5 DATA ASSUMED FOR SOIL 55<br/>6.6 SOIL SPRING PROPERTIES TO MODEL SOIL-PIPE INTERACTION 55<br/>6.6.1 Axial Soil Spring 55<br/>6.6.2 Lateral Soil Spring 58<br/>6.6.3 Vertical soil spring 60<br/>7 PROBLEM FORMULATION 63<br/>7.1 GENERAL 63<br/>7.2 SELECTION OF THE SOFTWARE 63<br/>7.3 ABOUT THE SOFTWARE 63<br/>7.4 MODEL PREPARATION, LOADING AND ANALYSIS 64<br/>7.4.1 Defining materials 64<br/>7.4.2 Creating pipe geometry 64<br/>7.4.3 Assigning material properties 65<br/>7.4.4 Defining the connections 65<br/>7.4.5 Creating mesh 65<br/>7.4.6 Defining and assigning static loads 67<br/>7.5 ASSIGNING SOIL SPRING PROPERTIES TO THE PIPE 69<br/>7.6 MODAL ANALYSIS 70<br/>7.7 RESPONSE SPECTRUM ANALYSIS 70<br/>8 RESULTS AND DISCUSSION 71<br/>8.1 CHECK FOR BUCKLING CAPACITY IN THE PIPE 71<br/>8.2 AXIAL STRAIN 71<br/>8.2.1 Results from Modal Analysis 72<br/>8.2.2 Response spectrum method 73<br/>8.2.3 Deformation at the joints 74<br/>9 CONCLUSION AND FUTURE SCOPE 76<br/>9.1 CONCLUSION 76<br/>9.2 FUTURE SCOPE 76<br/>10 REFERENCE 77<br/>11 APPENDIX A-CALCULATION OF SLENDERNESS RATIO 79<br/> |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Gajjar, Rajul (Guide) |
890 ## - Country | |
Country | India |
891 ## - Topic | |
Topic | 2014 Batch |
891 ## - Topic | |
Topic | FT-PG |
891 ## - Topic | |
Topic | Structural Design |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Withdrawn status | Home library | Current library | Date acquired | Source of acquisition | Full call number | Barcode | Date last seen | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Faculty of Technology | CEPT Library | CEPT Library | 31/07/2018 | Faculty of Technology | SD TH-0206 ABI | 019653 | 31/07/2018 | 31/07/2018 | Thesis |