Computational modelling of masonary, brickwork and blockwork structures (Record no. 42246)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 08448 a2200169 4500 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781874672043 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 693.21 |
Item number | BUL |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Bull, J. W. Ed. |
245 ## - TITLE STATEMENT | |
Title | Computational modelling of masonary, brickwork and blockwork structures |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc | Saxe-Coburg Publications |
Place of publication, distribution, etc | Stirling |
Date of publication, distribution, etc | 2001 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | ix,326p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | CONTENTS<br/>Preface vii<br/>1 Damage and Failure Models 1<br/>E. Papa<br/>1.1 Introduction 1<br/>1.2 Heterogeneous models 2<br/>1.3 Homogeneous models 3<br/>1.4 An elastic-plastic damage model for masonry 5<br/>1.4.1 Damage evolution law 8<br/>1.4.2 Numerical analyses 10<br/>1.5 A unilateral damage model based on a homogenisation procedure 13<br/>1.5.1 The damage model for bricks and mortar 14<br/>1.5.2 The homogenisation procedure 18<br/>1.5.3 Numerical analyses 19<br/>1.6 Conclusions 21<br/>2 Formulation of Elastic-plastic Joint Elements<br/>and their Application to Practical Structures 27<br/>T. Aoki<br/>2.1 Introduction 27<br/>2.2 The Formulation of Elastic-plastic Joint Elements (Model I: Truss<br/>members breaking in tension) 28<br/>2.2.1 Angle '0 and Stiffness of Esd and Esv 30<br/>2.2.2 Yielding Condition for Plane Stress 32<br/>2.2.3 Formulation of Elastic-plastic Joint Element for the Finite Element<br/>Method 37<br/>2.3 An Analysis of Plane Concrete Under Combined Stress (Model II:<br/>Joint elements for thin layers of mortar) 38<br/>2.4 Slippage under a Footing 40<br/>2.4.1 Joint Elements for Soil (Model III: Mohr-Coulomb yielding<br/>condition) 40<br/>2.4.2 Analysis of Slippage Occurs under a Footing 43<br/>2.5 Conclusion 47<br/>3 Earthquake and Vibration Effects 53<br/>C.A. Syrmakezis and A.A. Sophocleous<br/>3.1 Introduction 53<br/>3.2 Masonry structures 55<br/>3.3 Methods of analysis 57<br/>3.4 Masonry computational models 58<br/>3.5 Structural Simulation 59<br/>3.6 Simulation of Actions 59<br/>3.7 Simulation of Materials Characteristics 60<br/>3.7.1 General 60<br/>3.7.2 Modulus of elasticity - Poisson ratio 60<br/>3.7.3 Shear Modulus 61<br/>3.7.4 Compressive - Tensile Strength 61<br/>3.7.5 Failure criterion 62<br/>3.8 Applications 65<br/>3.8.1 Description of the structures 66<br/>3.8.2 Structural simulation of the structures 66<br/>3.8.3 Simulation of actions 67<br/>3.8.4 Material simulation 68<br/>3.8.5 Analysis results 68<br/>3.8.6 Failure analysis results 68<br/>3.8.7 Repairing and/or strengthening decisions 71<br/>3.8.8 Reanalysis 72<br/>3.8.9 Final Failure Analysis . 75<br/>3.9 Conclusions 75<br/>4 The Dynamics of Masonry Bell Towers 79<br/>A.R. Selby and J.M. Wilson<br/>4.1 Introduction 79<br/>4.2 Tower construction, bell frames and bells 81<br/>4.3 Forces from a swinging bell 84<br/>4.4 Measured Tower Response 89<br/>4.5 Computational modelling 93<br/>4.5.1 Timoshenko beam models 95<br/>4.5.2 3-D finite element modelling 97<br/>4.5.3 Durham Cathedral and Newcastle Cathedral 100<br/>4.5.4 Summary of FE Analyses 102<br/>4.6 Serviceability and ultimate limit conditions 103<br/>4.6.1 Serviceability 103<br/>4.6.2 Ultimate limits and factors of safety 105<br/>4.7 Conclusions 106<br/>4.8 Acknowledgements 106<br/>5 Settlement Induced Damage to Masonry Buildings 109<br/>C. Augarde<br/>5.1 Introduction 110<br/>5.2 Current procedures used to assess settlement damage due to tunnelling 110<br/>5.2.1 Numerical models of the tunnelling settlement problem 111<br/>5.2.2 Modelling masonry 112<br/>5.3 A three-dimensional finite element model 113<br/>5.3.1 Simulation of tunnelling 113<br/>5.3.2 Modelling a building 114<br/>5.3.3 Choice of masonry model 114<br/>5.3.4 Hardware & software 115<br/>5.4 An elastic no-tension material model for masonry 115<br/>5.4.1 The basic formulation 115<br/>5.4.2 Validation of the masonry formulation 117<br/>5.4.3 Implementation and numerical stability 121<br/>5.4.4 Post-processing masonry data 122<br/>5.5 Two-dimensional studies of facades 123<br/>5.5.1 Fac¸ade types analysed 123<br/>5.5.2 Analysis procedure 123<br/>5.5.3 Results for a plain facade 125<br/>5.5.4 Results for a fac¸ade with openings 127<br/>5.5.5 Discussion 128<br/>5.6 The three-dimensional model of tunnelling 129<br/>5.6.1 Example analyses of a simple building 129<br/>5.6.2 Results 131<br/>5.6.3 Modelling the effects of shaft construction on an 18th century<br/>stone clad church, Maddox Street, London. 134<br/>5.6.4 Results 136<br/>5.6.5 Discussion 139<br/>5.7 Concluding remarks 140<br/>5.8 Acknowledgements 140<br/>6 Modelling and Behaviour of MasonryWalls in Fire 143<br/>M. O'Gara<br/>6.1 Introduction 143<br/>6.2 Thermo-Structural Behaviour of Masonry Walls in Fire 145<br/>6.2.1 Overview 145<br/>6.2.2 Thermal Bowing 145<br/>6.2.3 Masonry Material Properties 146<br/>6.2.4 Wall Geometry 147<br/>6.2.5 Boundary Conditions 147<br/>6.2.6 Applied loading 148<br/>6.2.7 Moisture effects and material spalling 150<br/>6.3 Mechanical Material Properties at Elevated Temperature 150<br/>6.3.1 Overview 150<br/>6.3.2 Concrete material properties 151<br/>6.3.3 Elevated temperature clay and calcium silicate material behaviour 157<br/>6.4 Mathematical Modelling of an Elevated Temperature Masonry Material 157<br/>6.4.1 Elevated temperature concrete material model 158<br/>6.4.2 Elevated temperature clay material model 161<br/>6.5 Description of the Numerical Model 162<br/>6.5.1 Justification of Numerical Strategy 162<br/>6.5.2 The Finite Element Model Developed 163<br/>6.5.3 Validation of the material model and its implementation 166<br/>6.6 Numerical Examples and Comparison with Experimental Results 166<br/>6.6.1 Experimental Investigation 166<br/>6.6.2 Analysis of Experimental Results 168<br/>6.6.3 Discussion of Results 169<br/>6.7 Concluding remarks 175<br/>7 Discontinuous Deformation Analysis of Masonry Bridges 177<br/>N. Bicanic, D. Ponniah and J. Robinson<br/>7.1 Introduction 177<br/>7.2 Computational Frameworks for Masonry 179<br/>7.3 Discontinuous Deformation Analysis, DDA 181<br/>7.4 Couplet/Heyman Benchmark Problem 184<br/>7.5 Edinburgh Arch and Influence of Backfill 188<br/>7.6 Conclusions 193<br/>8 Modelling Masonry Arch Bridges 197<br/>C. Melbourne and M. Gilbert<br/>8.1 Introduction 197<br/>8.2 The influence of masonry materials 198<br/>8.3 Development of modelling strategies for masonry arch bridges 201<br/>8.4 The 'mechanism' method of analysis: a linear programming formulation204<br/>8.4.1 Basic method204<br/>8.4.2 Removing 'no-sliding' assumption 208<br/>8.4.3 Including crushing of the masonry in the analysis 209<br/>8.4.4 Multi-span arches. 211<br/>8.4.5 Multi-ring arches 211<br/>8.4.6 Masonry in the spandrel zone 212<br/>8.4.7 Soil-structure interaction213<br/>8.5 The use of elastic methods of analysis for masonry arch bridges . . . 213<br/>8.5.1 Modelling cracking . . . . . . . . . . . . . . . . . . . . . . . 214<br/>8.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215<br/>8.6 Conclusions 215<br/>8.A Derivation of the transformation matrices for rigid block analysis . . . 216<br/>9 Numerical Analysis of Old Masonry Buildings 221<br/>F. Genna and P. Ronca<br/>9.1 Introduction 221<br/>9.2 Issues in the numerical modelling of old masonry 224<br/>9.2.1 Geometry of the numerical model 224<br/>9.2.2 Discrete numerical model 224<br/>9.2.3 Loading and boundary conditions 225<br/>9.2.4 Choice of formulation and finite elements 225<br/>9.2.5 Choice of the constitutive model 226<br/>9.2.6 Choice of the material parameters 229<br/>9.2.7 Other issues 230<br/>9.3 Analysis of masonry walls 231<br/>9.3.1 A wall of the San Faustino cloister in Brescia, Italy 231<br/>9.3.2 A wall of the church "Chiesa della Disciplina" in Verolanuova,<br/>Italy 242<br/>9.4 Analysis of arches and vaults 251<br/>9.4.1 Influence of structural details on the computational model . . 252<br/>9.4.2 The computational models of the vault structural details . . . 252<br/>9.4.3 Elastic analysis of a cloister vault with frescoes of the XVIII<br/>century 256<br/>9.4.4 Limit analysis of vaulted masonry structures subjected to both<br/>vertical and horizontal actions 258<br/>9.4.5 Limit analysis of a supporting arch of the Basilica Superiore<br/>of Assisi, Italy 262<br/>9.5 Conclusion 266<br/>10 Historic Masonry Structures 273<br/>E.A.W. Maunder and W.J. Harvey<br/>10.1 Introduction 273<br/>10.2 Structural Philosophy 275<br/>10.3 Computational Techniques 276<br/>10.3.1 A Review 277<br/>10.3.2 Thrust lines in skeletal forms 278<br/>10.3.3 Thrust lines in continuous forms 284<br/>10.4 Case studies of historical masonry structures 292<br/>10.4.1 Bridgemill Bridge 292<br/>10.4.2 Horrabridge 293<br/>10.4.3 Exeter Cathedral 298<br/>10.4.4 Wells Cathedral 305<br/>10.5 Closure . . 307<br/>Index 312<br/>Author Biographies 319<br/> |
600 ## - SUBJECT ADDED ENTRY--PERSONAL NAME | |
9 (RLIN) | 41413 |
890 ## - Country | |
Country | UK |
891 ## - Topic | |
Topic | FD |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Withdrawn status | Home library | Current library | Date acquired | Source of acquisition | Cost, normal purchase price | Total Checkouts | Full call number | Barcode | Date last seen | Date last borrowed | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Faculty of Design | CEPT Library | CEPT Library | 17/11/2015 | amazon.in | 15960.00 | 3 | 693.21 BUL | 014651 | 11/01/2016 | 30/12/2015 | 15960.00 | 13/10/2015 | Book |