Building earth observation cameras

Joseph, George

Building earth observation cameras - New York CRC Press 2015 - xvii,350p.

Contents
Preface xiii
Author xvii
1. Introduction 1
1.1 Remote Sensing. 2
1.2 Civilian Earth Imaging System 3
1.3 Indian Earth Observation Program: The Evolution 5
1.4 Earth Observation System: The Paradigm Shift 6
2. Image Formation 9
2.1 Introduction 9
2.2 Electromagnetic Radiation 10
2.2.1 Quantum Nature of Electromagnetic Radiation 11
2.2.2 Thermal Radiation 12
2.2.3 Propagation of Electromagnetic Radiation from One Medium to Another 12
2.2.4 Diffraction 13
2.3 Some Useful Terminologies of the Imaging Systems 14
2.4 Aberrations 17
2.4.1 Spherical Aberration 18
2.4.2 Coma 19
2.4.3 Astigmatism 20
2.4.4 Distortion 20
2.4.5 Curvature of the Field 20
2.4.6 Chromatic Aberration 20
2.5 Wave Optics 22
2.6 Image Quality Evaluation 25
2.7 Modulation Transfer Function 27
2.8 Source of Electromagnetic Radiation for Imaging 31
2.9 Radiometric Consideration 31
References 34
3. Imaging Optics 35
3.1 Introduction 35
3.2 Refractive Optics 36
3.2.1 Telecentric Lenses 40 3.3 Reflective and Catadioptric Systems 43
3.3.1 Types of Reflective Telescope Systems 43
3.3.2 Increasing Field of View of Telescopes 46
3.3.2.1 Catadioptric System 47
3.3.2.2 All Reflective Wide Field of View Telescope 48
3.4 Stray Light Control and Baffling 52
3.5 Building a Reflective Telescope 54
3.5.1 Selection of Mirror Material 55
3.5.2 Mirror Fabrication 58
3.5.2.1 Lightweighting of Mirror 59
3.5.2.2 Optimizing Lightweight Mirror Structure 63
3.5.3 Mirror Mounts 64
3.5.3.1 Bipod Mounts 65
3.5.4 Alignment of Mirrors 67
References 71
4. Earth Observation Cameras: An Overview 75
4.1 Introduction 75
4.2 Spatial Resolution 76
4.3 Spectral Resolution 82
4.3.1 Interference Filter 86
4.4 Radiometric Resolution 87
4.4.1 Radiometric Quality 88
4.5 Temporal Resolution 90
4.6 Performance Specification 91
4.7 Imaging Modes 92
4.8 On-Orbit Performance Evaluation 93
References 98
5. Optomechanical Scanners 101
5.1 Introduction 101
5.2 Principle of Operation 101
5.3 Scanning Systems 103
5.3.1 Scan Geometry and Distortion 110
5.4 Collecting Optics 112
5.5 Dispersive System and Focal Plane Layout 113
5.6 Detectors 117
5.6.1 Detector Figure of Merit 117
5.6.2 Thermal Detector 120
5.6.3 Photon Detectors 121
5.6.3.1 Photoemissive Detectors 122
5.6.3.2 Photoconductive Detector 123
5.6.3.3 Photovoltaic Detector 123
5.6.4 Quantum Well Infrared Photodetectors 126
5.6.5 Operating Temperature 126
5.6.6 Signal Processing 130
5.7 System Design Considerations 133
5.8 Enhanced Thematic Mapper Plus. 138
References 142
6. Pushbroom Imagers. 145
6.1 Introduction 145
6.2 Principle of Operation 145
6.3 Linear Array for Pushbroom Scanning 147
6.3.1 Charge-Coupled Devices 147
6.3.2 CMOS Photon Detector Array 150
6.3.3 Hybrid Arrays 152
6.4 CCD Signal Generation and Processing 153
6.4.1 CCD Output Signal 154
6.4.2 Off-the-Chip Signal Processing 155
6.5 Spaceborne Pushbroom Cameras 159
6.6 IRS Cameras: LISS-1 and -2 159
6.6.1 Focal Plane Layout 162
6.6.1.1 Single Collecting Optics Scheme 162
6.6.1.2 Multiple Lens Option 165
6.6.2 Mechanical Design 166
6.6.3 Electronics 168
6.6.4 Alignment and Characterization 168
6.6.4.1 Focusing of the Camera System 169
6.6.4.2 Image Format Matching and BBR 172
6.6.4.3 Flat Field Correction 174
6.6.5 Qualification 179
6.7 IRS-1C/D Camera 180
6.7.1 LISS-3 Design 181
6.7.2 Wide Field Sensor 182
6.7.3 PAN Camera 184
6.7.3.1 Payload Steering Mechanism 187
6.8 RESOURCESAT Series 188
6.8.1 RESOURCESAT LISS-3 189
6.8.2 Advanced Wide Field Sensor (AWiFS) 190
6.8.3 LISS-IV Multispectral Camera 190
6.9 SPOT Earth Observation Camera 194
6.10 Landsat 8: Landsat Data Continuity Mission 198
6.10.1 Operational Land Imager 199
6.10.2 Thermal Infrared Sensor 202
6.11 Hybrid Scanner 205
6.11.1 GEO High-Resolution Imaging Systems: Technology Challenges 208
6.11.2 GEO-Resource Survey Systems 209
6.11.2.1 ESAGEO-HRSystem 209
6.11.2.2 Geostationary Ocean Color Imager 212
6.11.2.3 ISRO Geostationary Imaging Satellite (GISAT) 213
6.11.2.4 GeostationaryHyperspectral Imaging Radiometer (NASA) 214
References 214
7. SubmeterImaging 219
7.1 Introduction 219
7.2 Considerations for Realizing a High-Resolution Imaging System 220
7.3 Increasing the Integration Time 221
7.3.1 Time Delay and Integration 222
7.3.2 Asynchronous Imaging 223
7.3.3 Staggered Array Configuration 225
7.4 Choosing Faster Optics 227
7.4.1 Choosing Charge-Coupled Device Pixel Dimension 227
7.4.2 Increasing Collecting Optics Diameter 229
7.5 Data Transmission 229
7.5.1 Data Compression 232
7.6 Constraints on the Satellite 234
7.7 Imaging Cameras with Submeter Resolution 237
7.7.1 IKONOS 237
7.7.2 QuickBird-2 239
7.7.3 GeoEye-1 240
7.7.4 WorldView Imaging Systems 240
7.7.5 Indian Remote Sensing Satellite High-Resolution Imaging Systems 243
7.8 What Limits the Spatial Resolution? 244
References 247

8. Hyperspectral Imaging 251
8.1 Introduction 251
8.2 Hyperspectral Imaging Configuration 254
8.2.1 Scanner Approach 255
8.2.2 Pushbroom Approach 256
8.3 Spectrometers: An Overview 257
8.3.1 Dispersive Spectrometers 258
8.3.2 Fourier Transform Spectrometers 261
8.3.2.1 Michelson Interferometers 263
8.3.2.2 Sagnac Interferometer 266
8.3.3 Filter-Based Systems 270
8.4 Distortions: "Smile" and "Keystone" Effects 273
8.5 Hyperspectral Imaging Instruments 274
8.5.1 MightySat II: Fourier Transform Hyperspectral Imager 275
8.5.2 National Aeronautic and Space Administration Earth Observation 1: Hyperion 275
8.5.3 NASA EO-1 Linear Etalon Imaging Spectral Array Atmospheric Corrector 276
8.5.4 Indian Space Research Organization Hyperspectral Imager 277
References 278
9. Adding the Third Dimension: Stereo Imaging 281
9.1 Introduction 281
9.2 Stereo Pair Generation Geometries 284
9.2.1 Across-Track Stereoscopy 285
9.2.2 Along-Track Stereoscopy 287
9.3 Along-Track Stereo Using Multiple Telescopes 289
9.3.1 IRS CARTOSAT 1 289
9.3.2 SPOT High-Resolution Stereo Camera 292
9.3.3 Advanced Land Observation Satellite Stereo Mapping Camera: PRISM 294
9.4 Stereo Pairs with Single Optics 295
9.4.1 Monocular Electro-Optical Stereo Scanner 295
9.4.2 Chandrayaanl Terrain Mapping Camera 298
9.4.3 Along Track Stereo by Satellite Tilt 299
References 300
10. Journey from Ground to Space 303
10.1 Introduction 303
10.2 Launch Environment 303
10.3 Space Environment 304
10.3.1 Thermal Environment 304
10.3.2 Vacuum 305
10.3.3 Radiation Environment 306
10.4 Space Hardware Realization Approach 309
10.4.1 Model Philosophy 313
10.5 Environmental Tests 314
10.5.1 Mechanical Tests 314
10.5.2 Thermovacuum Test 316
10.5.3 Electromagnetic Interference/Compatibility Tests 317
10.5.4 Environmental Test Levels 317
10.5.5 Ground Support Equipment/Facilities 318
10.5.6 Contamination Control 319
10.6 Reviews 320
10.6.1 Baseline Design Review 320
10.6.2 Preliminary Design Review (PDR) 320
10.6.3 Critical Design Review 320
10.6.4 Preshipment Review 321
10.6.5 Configuration Change Control and Nonconformance Management 321
10.6.6 Failure Review Committee 322
10.7 Parts/Components Procurement 323
10.8 Reliability and Quality Assurance 324
References 325
Appendix: Representative Imageries 327
Index 335


9781466566477

551.5271 / JOS
Excel To HTML using codebeautify.org Sheet Name :- Location Chart
Location Chart Basement 1 (B1) Class No. 600 - 649, 660 - 699
(B1) :Mezzanine 1 Class No. 700 - 728
(B1) :Mezzanine 2 Class No. 728.1 - 799, 650 - 659, Reference Books, Faculty work
Basement 2 (B2) Class No. 000 - 599, 800-999
Basement 3 (B3) (Please Inquire at the Counter for resources) Theses, Students' works, Bound Journals, Drawings, Atlas, Oversize Books, Rare Books, IS codes, Non-book Materials