Wind and earthquake resistant buildings : structural analysis and design
Taranath, Bungale S.
Wind and earthquake resistant buildings : structural analysis and design - London,Boston,New York etc CRC Press 2005 - XV,892P.
CONTENTS 1. Wind Loads 1 1.1. Design Considerations 1 1.2. Nature of Wind 2 1.2.1. Types of wind2 1.3. Characteristics of Wind 3 1.3.1. Variation of Wind Velocity with Height 3 1.3.2. Wind Turbulence 4 1.3.3. Probabilistic Approach 5 1.3.4. Vortex Shedding 7 1.3.5. Dynamic Nature of Wind10 1.3.6. Cladding Pressures 10 1.4. Code Provisions for Wind Loads13 1.4.1. Uniform Building Code, 1997: Wind Load Provisions 15 1.4.2. ASCE 7-02: Wind Load Provisions 24 1.4.3. National Building Code of Canada (NBCC 1995): Wind Load Provisions 68 1.5. Wind-Tunnel Engineering 83 1.5.1. Rigid Model84 1.5.2. Aeroelastic Study86 1.5.3. High-Frequency Base Force Balance Model 97 1.5.4. Pedestrian Wind Studies93 1.5.5. Motion Perception: Human Response to Building Motions 97 2. Seismic Design 99 2.1. Building Behavior 101 2.1.1. Influence of Soil 102 2.1.2. Damping 103 2.1.3. Building Motions and Deflections104 2.1.4. Building Drift .104 2.2. Seismic Design Concept 104 2.2.1. Structural Response 105 2.2.2. Load Path 105 2.2.3. Demands of Earthquake Motions 106 2.2.4. Response of Elements Attached to Buildings 106 2.2.5. Adjacent Buildings 106 2.2.6. Irregular Buildings 107 2.2.7. Lateral-Force-Resisting Systems 108 2.2.8. Diaphragms 111 2.2.9. Ductility 111 2.2.10. Damage Control Features 112 2.2.11. Continuous Load Path113 2.2.12. Redundancy 114 2.2.13. Configuration 114 2.2.14. Dynamic Analysis 114 2.3. Uniform Building Code, 1997 Edition: Seismic Provisions 132 2.3.1. Building Irregularities 133 2.3.2. Design Base Shear, V136 2.3.3. Seismic Zone Factor Z 139 2.3.4. Seismic Importance Factor IE 141 2.3.5. Building Period 7 141 2.3.6. Structural System Coefficient R 142 2.3.7. Seismic Dead Load W 142 2.3.8. Seismic Coefficients C, and Ca 144 2.3.9. Soil Profile Types 146 2.3.10. Seismic Source Type A, B, and C147 2.3.11. Near Source Factors Na and Nv 147 2.3.12. Distribution of Lateral Force Fx 147 2.3.13. Story Shear Vx and Overturning Moment Mx 149 2.3.14. Torsion149 2.3.15. Reliability/Redundancy Factor p 149 2.3.16. Drift Limitations 150 2.3.17. Deformation Compatibility 151 2.3.18. Load Combinations 155 2.3.19. Design Example, 1997 UBC: Static Procedure 158 2.3.20. OSHPD and DSA Seismic Design Requirements 165 2.4. ASCE 7-02, IBC 2003, and NFPA 5000: Seismic Provisions 169 2.4.1.Seismic Design Highlights: ASCE 7-02, IBC-03, NFPA 5000 ASCE 7-02: Detail Description of Seismic Provisions 175 2.4.2.IBC 2003, NFPA 5000 (ASCE 7-02) Equivalent Lateral-Force Procedure 190 2.4.3.Dynamic Analysis Procedure 202 2.4.4. Design and Detailing Requirements205 2.4.5. Seismic Design Example: Static Procedure, IBC 2003 2.4.6.(ASCE 7-02, NFPA 5000) 205 2.4.7.Seismic Design Example: Dynamic Analysis Procedure (Response Spectrum Analysis), Hand Calculations272 2.4.8.Anatomy of Computer Response Spectrum Analyses 2.5.(In Other Words, What Goes on in the Black Box)220 Seismic Design of Structural Elements, Nonstructural Components, and Equipment; 1997 UBC Provisions 231 2.5.1. Architectural Components 232 2.5.2. Exterior Ornaments and Appendages 233 2.5.3. Component Behavior 233 2.5.4. 1997 UBC Provisions 235 2.6. Dynamic Analysis Theory 244 2.6.1. Single-Degree-of-Freedom Systems 248 2.6.2. Multidegree-of-Freedom Systems 250 2.6.3. Modal Superposition Method Chapter Summary 258 3. Steel Buildings 261 3.1. Rigid Frames (Moment Frames) 262 3.1.1. Deflection Characteristics264 3.1.2. Cantilever Bending Component 265 3.1.3. Shear Racking Component 265 3.2. Braced Frames 266 3.2.1. Types of Braces 269 3.3. Staggered Truss System 270 3.3.1. Floor System 271 3.3.2. Columns 274 3.3.3. Trusses 275 3.4. Eccentric Braced Frame (EBF) 275 3.4.1. Ductility 276 3.4.2. Behavior 276 3.4.3. Essential Features of Link276 3.4.4. Analysis and Design Considerations 277 3.4.5. Deflection Considerations278 3.4.6. Conclusions278 3.5. Interacting System of Braced and Rigid Frames 278 3.5.1. Behavior 281 3.6. Outrigger and Belt Truss Systems 282 3.6.1. Behavior 284 3.6.2. Deflection Calculations 285 3.6.3. Optimum Location of a Single Outrigger 290 3.6.4. Optimum Location of Two Outriggers 295 3.6.5. Recommendations for Optimum Locations of Belt and Outrigger Trusses295 3.7. Framed Tube System 295 3.7.1. Behavior 298 3.7.2. Shear Lag Phenomenon 300 3.8. Irregular Tube 302 3.9. Trussed Tube 303 3.10. Bundled Tube 305 3.11. Seismic Design 307 3.11.1. Concentric Braced Frames 308 3.11.2. Eccentric Braced Frame (EBF) 324 3.11.3. Moment Frames 335 4. Concrete Buildings349 4.1. Structural Systems 349 4.1.1. Flat Slab-Beam System 349 4.1.2. Flat Slab-Frame with Shear Walls352 4.1.3. Coupled Shear Walls 352 4.1.4. Rigid Frame 352 4.1.5. Tube System with Widely Spaced Columns353 4.1.6. Rigid Frame with Haunch Girders 353 4.1.7. Core-Supported Structures 354 4.1.8. Shear Wall-Frame Interaction354 4.1.9. Frame Tube System 356 4.1.10. Exterior Diagonal Tube357 4.1.11. Bundled Tube358 4.1.12. Miscellaneous Systems 358 4.2. Seismic Design 361 4.2.1. Load Factors, Strength Reduction Factors, and Load Combinations 369 4.2.2. Integrity Reinforcement 377 4.2.3. Intermediate Moment-Resisting Frames 373 4.2.4. Special Moment-Resisting Frames 377 4.2.5. Shear Walls3S7 4.2.6. Frame Members Not Designed to Resist Earthquake Forces390 4.2.7. Diaphragms397 4.2.8. Foundations 392 4.2.9. Design Examples 394 5. Composite Buildings 443 5.1. Composite Elements 444 5.1.1. Composite Slabs444 5.1.2. Composite Frame Beams445 5.1.3. Composite Columns445 5.1.4. Composite Diagonals 449 5.1.5. Composite Shear Walls 449 5.2. Composite Building Systems 450 5.2.1. Composite Shear Wall Systems452 5.2.2. Shear Wall-Frame Interacting Systems454 5.2.3. Tube Systems455 5.2.4. Vertically Mixed Systems 458 5.2.5. Mega Frames with Super Columns459 5.3. Example Projects 460 5.3.1. Buildings with Composite Steel Pipe Columns460 5.3.2. Buildings with Formed Composite Columns462 5.3.3. Buildings with Composite Shear Walls and Frames465 5.3.4. Building with Composite Tube System468 5.4. Super-Tall Buildings: Structural Concept 468 5.5. Seismic Composite Systems 470 5.5.1. Moment-Resisting Frames 474 5.5.2. Braced Frames480 5.5.3. Composite Shear Walls485 5.5.4. Example Projects 489 6. Seismic Rehabilitation of Existing Buildings 499 6.1. Code-Sponsored Design 500 6.2. Alternate Design Philosophy 507 6.3. Code Provisions for Seismic Upgrade 502 6.4. Building Deformations 504 6.5. Common Deficiencies and Upgrade Methods 505 6.5.1. Diaphragms506 6.5.2. Concrete Shear Walls 573 6.5.3. Reinforcing of Steel-Braced Frames 520 6.5.4. Infilling of Moment Frames 527 6.5.5. Reinforced Concrete Moment Frames527 6.5.6. Steel Moment Frames522 6.5.7. Open Storefront 523 6.5.8. Clerestory 523 6.5.9. Shallow Foundations523 6.5.10. Rehabilitation Measures for Deep Foundations525 6.5.11. Nonstructural Elements525 6.6. FEMA 356: Prestandard and Commentary on the Seismic Rehabilitation of Buildings 527 6.6.1. Overview of Performance Levels527 6.6.2. Permitted Design Methods529 6.6.3. Systematic Rehabilitation 530 6.6.4. FEMA 356: Design Examples 554 6.7.Summary of FEMA 356559 6.8. Fiber-Reinforced Polymer Systems for Strengthening of Concrete Buildings 560 6.8.1. Mechanical Properties and Behavior 560 6.8.2. Design Philosophy 561 6.8.3. Flexural Design561 6.9.Seismic Strengthening Details 562 6.9.1. Common Strategies for Seismic Strengthening564 7. Gravity Systems 565 7.1.Structural Steel 585 7.1.1.Tension Members 586 7.1.2.Members Subject to Bending 589 7.1.3.Members Subject to Compression 593 7.2.Concrete Systems603 7.2.1.One-Way Slabs604 7.2.2.T-Beam Design 611 7.2.3.Two-Way Slabs 620 7.2.4.Unit Structural Quantities 626 7.3.Prestressed Concrete Systems 627 7.3.1.Prestressing Methods 629 7.3.2.Materials 630 7.3.3.Design Considerations 632 7.3.4.Cracking Problems in Post-Tensioned Floors 634 7.3.5.Concept of Secondary Moments 636 7.3.6.Step-by-Step Design Procedure 648 7.3.7.Strength Design for Flexure 675 7.4.Composite Gravity Systems 683 7.4.1.Composite Metal Deck 683 7.4.2.Composite Beams 699 7.4.3.Composite Haunch Girders716 7.4.4.Composite Trusses718 7.4.5.Composite Stub Girders 718 7.4.6.Composite Columns 727 Chapter 8. Special Topics 731 8.1.Tall Buildings 731 8.1.1.Structural Concepts 732 8.1.2.Case Studies 734 8.1.3.Future of Tall Buildings789 8.1.4.Unit Structural Quantities 797 8.2.Damping Devices for Reducing Motion Perception 796 8.2.1.Passive Viscoelastic Dampers798 8.2.2.Tuned Mass Damper 795 8.2.3.Sloshing Water Damper 803 8.2.4.Tuned Liquid Column Damper 803 8.2.5.Simple Pendulum Damper 805 8.2.6.Nested Pendulum Damper 807 8.3.Panel Zone Effects 807 8.4.Differential Shortening of Columns 872 8.4.1.Simplified Method 816 8.4.2.Column Shortening Verification During Construction 826 8.5.Floor-Leveling Problems 828 8.6.Floor Vibrations 829 8.6.1.General Discussion 829 8.6.2.Response Calculations 831 8.7.Seismic Isolation 835 8.7.1.Salient Features 837 8.7.2.Mechanical Properties of Seismic Isolation Systems 839 8.7.3.Seismically Isolated Structures: ASCE 7-02 Design Provisions 842 8.8.Passive Energy Dissipation Systems 864 8.9.Buckling-Restrained Braced Frame 867 Selected References 873 Appendix AConversion Factors: U.S. Customary to SI Units 877 Index 879
0824759346
624.1762 / TAR
Wind and earthquake resistant buildings : structural analysis and design - London,Boston,New York etc CRC Press 2005 - XV,892P.
CONTENTS 1. Wind Loads 1 1.1. Design Considerations 1 1.2. Nature of Wind 2 1.2.1. Types of wind2 1.3. Characteristics of Wind 3 1.3.1. Variation of Wind Velocity with Height 3 1.3.2. Wind Turbulence 4 1.3.3. Probabilistic Approach 5 1.3.4. Vortex Shedding 7 1.3.5. Dynamic Nature of Wind10 1.3.6. Cladding Pressures 10 1.4. Code Provisions for Wind Loads13 1.4.1. Uniform Building Code, 1997: Wind Load Provisions 15 1.4.2. ASCE 7-02: Wind Load Provisions 24 1.4.3. National Building Code of Canada (NBCC 1995): Wind Load Provisions 68 1.5. Wind-Tunnel Engineering 83 1.5.1. Rigid Model84 1.5.2. Aeroelastic Study86 1.5.3. High-Frequency Base Force Balance Model 97 1.5.4. Pedestrian Wind Studies93 1.5.5. Motion Perception: Human Response to Building Motions 97 2. Seismic Design 99 2.1. Building Behavior 101 2.1.1. Influence of Soil 102 2.1.2. Damping 103 2.1.3. Building Motions and Deflections104 2.1.4. Building Drift .104 2.2. Seismic Design Concept 104 2.2.1. Structural Response 105 2.2.2. Load Path 105 2.2.3. Demands of Earthquake Motions 106 2.2.4. Response of Elements Attached to Buildings 106 2.2.5. Adjacent Buildings 106 2.2.6. Irregular Buildings 107 2.2.7. Lateral-Force-Resisting Systems 108 2.2.8. Diaphragms 111 2.2.9. Ductility 111 2.2.10. Damage Control Features 112 2.2.11. Continuous Load Path113 2.2.12. Redundancy 114 2.2.13. Configuration 114 2.2.14. Dynamic Analysis 114 2.3. Uniform Building Code, 1997 Edition: Seismic Provisions 132 2.3.1. Building Irregularities 133 2.3.2. Design Base Shear, V136 2.3.3. Seismic Zone Factor Z 139 2.3.4. Seismic Importance Factor IE 141 2.3.5. Building Period 7 141 2.3.6. Structural System Coefficient R 142 2.3.7. Seismic Dead Load W 142 2.3.8. Seismic Coefficients C, and Ca 144 2.3.9. Soil Profile Types 146 2.3.10. Seismic Source Type A, B, and C147 2.3.11. Near Source Factors Na and Nv 147 2.3.12. Distribution of Lateral Force Fx 147 2.3.13. Story Shear Vx and Overturning Moment Mx 149 2.3.14. Torsion149 2.3.15. Reliability/Redundancy Factor p 149 2.3.16. Drift Limitations 150 2.3.17. Deformation Compatibility 151 2.3.18. Load Combinations 155 2.3.19. Design Example, 1997 UBC: Static Procedure 158 2.3.20. OSHPD and DSA Seismic Design Requirements 165 2.4. ASCE 7-02, IBC 2003, and NFPA 5000: Seismic Provisions 169 2.4.1.Seismic Design Highlights: ASCE 7-02, IBC-03, NFPA 5000 ASCE 7-02: Detail Description of Seismic Provisions 175 2.4.2.IBC 2003, NFPA 5000 (ASCE 7-02) Equivalent Lateral-Force Procedure 190 2.4.3.Dynamic Analysis Procedure 202 2.4.4. Design and Detailing Requirements205 2.4.5. Seismic Design Example: Static Procedure, IBC 2003 2.4.6.(ASCE 7-02, NFPA 5000) 205 2.4.7.Seismic Design Example: Dynamic Analysis Procedure (Response Spectrum Analysis), Hand Calculations272 2.4.8.Anatomy of Computer Response Spectrum Analyses 2.5.(In Other Words, What Goes on in the Black Box)220 Seismic Design of Structural Elements, Nonstructural Components, and Equipment; 1997 UBC Provisions 231 2.5.1. Architectural Components 232 2.5.2. Exterior Ornaments and Appendages 233 2.5.3. Component Behavior 233 2.5.4. 1997 UBC Provisions 235 2.6. Dynamic Analysis Theory 244 2.6.1. Single-Degree-of-Freedom Systems 248 2.6.2. Multidegree-of-Freedom Systems 250 2.6.3. Modal Superposition Method Chapter Summary 258 3. Steel Buildings 261 3.1. Rigid Frames (Moment Frames) 262 3.1.1. Deflection Characteristics264 3.1.2. Cantilever Bending Component 265 3.1.3. Shear Racking Component 265 3.2. Braced Frames 266 3.2.1. Types of Braces 269 3.3. Staggered Truss System 270 3.3.1. Floor System 271 3.3.2. Columns 274 3.3.3. Trusses 275 3.4. Eccentric Braced Frame (EBF) 275 3.4.1. Ductility 276 3.4.2. Behavior 276 3.4.3. Essential Features of Link276 3.4.4. Analysis and Design Considerations 277 3.4.5. Deflection Considerations278 3.4.6. Conclusions278 3.5. Interacting System of Braced and Rigid Frames 278 3.5.1. Behavior 281 3.6. Outrigger and Belt Truss Systems 282 3.6.1. Behavior 284 3.6.2. Deflection Calculations 285 3.6.3. Optimum Location of a Single Outrigger 290 3.6.4. Optimum Location of Two Outriggers 295 3.6.5. Recommendations for Optimum Locations of Belt and Outrigger Trusses295 3.7. Framed Tube System 295 3.7.1. Behavior 298 3.7.2. Shear Lag Phenomenon 300 3.8. Irregular Tube 302 3.9. Trussed Tube 303 3.10. Bundled Tube 305 3.11. Seismic Design 307 3.11.1. Concentric Braced Frames 308 3.11.2. Eccentric Braced Frame (EBF) 324 3.11.3. Moment Frames 335 4. Concrete Buildings349 4.1. Structural Systems 349 4.1.1. Flat Slab-Beam System 349 4.1.2. Flat Slab-Frame with Shear Walls352 4.1.3. Coupled Shear Walls 352 4.1.4. Rigid Frame 352 4.1.5. Tube System with Widely Spaced Columns353 4.1.6. Rigid Frame with Haunch Girders 353 4.1.7. Core-Supported Structures 354 4.1.8. Shear Wall-Frame Interaction354 4.1.9. Frame Tube System 356 4.1.10. Exterior Diagonal Tube357 4.1.11. Bundled Tube358 4.1.12. Miscellaneous Systems 358 4.2. Seismic Design 361 4.2.1. Load Factors, Strength Reduction Factors, and Load Combinations 369 4.2.2. Integrity Reinforcement 377 4.2.3. Intermediate Moment-Resisting Frames 373 4.2.4. Special Moment-Resisting Frames 377 4.2.5. Shear Walls3S7 4.2.6. Frame Members Not Designed to Resist Earthquake Forces390 4.2.7. Diaphragms397 4.2.8. Foundations 392 4.2.9. Design Examples 394 5. Composite Buildings 443 5.1. Composite Elements 444 5.1.1. Composite Slabs444 5.1.2. Composite Frame Beams445 5.1.3. Composite Columns445 5.1.4. Composite Diagonals 449 5.1.5. Composite Shear Walls 449 5.2. Composite Building Systems 450 5.2.1. Composite Shear Wall Systems452 5.2.2. Shear Wall-Frame Interacting Systems454 5.2.3. Tube Systems455 5.2.4. Vertically Mixed Systems 458 5.2.5. Mega Frames with Super Columns459 5.3. Example Projects 460 5.3.1. Buildings with Composite Steel Pipe Columns460 5.3.2. Buildings with Formed Composite Columns462 5.3.3. Buildings with Composite Shear Walls and Frames465 5.3.4. Building with Composite Tube System468 5.4. Super-Tall Buildings: Structural Concept 468 5.5. Seismic Composite Systems 470 5.5.1. Moment-Resisting Frames 474 5.5.2. Braced Frames480 5.5.3. Composite Shear Walls485 5.5.4. Example Projects 489 6. Seismic Rehabilitation of Existing Buildings 499 6.1. Code-Sponsored Design 500 6.2. Alternate Design Philosophy 507 6.3. Code Provisions for Seismic Upgrade 502 6.4. Building Deformations 504 6.5. Common Deficiencies and Upgrade Methods 505 6.5.1. Diaphragms506 6.5.2. Concrete Shear Walls 573 6.5.3. Reinforcing of Steel-Braced Frames 520 6.5.4. Infilling of Moment Frames 527 6.5.5. Reinforced Concrete Moment Frames527 6.5.6. Steel Moment Frames522 6.5.7. Open Storefront 523 6.5.8. Clerestory 523 6.5.9. Shallow Foundations523 6.5.10. Rehabilitation Measures for Deep Foundations525 6.5.11. Nonstructural Elements525 6.6. FEMA 356: Prestandard and Commentary on the Seismic Rehabilitation of Buildings 527 6.6.1. Overview of Performance Levels527 6.6.2. Permitted Design Methods529 6.6.3. Systematic Rehabilitation 530 6.6.4. FEMA 356: Design Examples 554 6.7.Summary of FEMA 356559 6.8. Fiber-Reinforced Polymer Systems for Strengthening of Concrete Buildings 560 6.8.1. Mechanical Properties and Behavior 560 6.8.2. Design Philosophy 561 6.8.3. Flexural Design561 6.9.Seismic Strengthening Details 562 6.9.1. Common Strategies for Seismic Strengthening564 7. Gravity Systems 565 7.1.Structural Steel 585 7.1.1.Tension Members 586 7.1.2.Members Subject to Bending 589 7.1.3.Members Subject to Compression 593 7.2.Concrete Systems603 7.2.1.One-Way Slabs604 7.2.2.T-Beam Design 611 7.2.3.Two-Way Slabs 620 7.2.4.Unit Structural Quantities 626 7.3.Prestressed Concrete Systems 627 7.3.1.Prestressing Methods 629 7.3.2.Materials 630 7.3.3.Design Considerations 632 7.3.4.Cracking Problems in Post-Tensioned Floors 634 7.3.5.Concept of Secondary Moments 636 7.3.6.Step-by-Step Design Procedure 648 7.3.7.Strength Design for Flexure 675 7.4.Composite Gravity Systems 683 7.4.1.Composite Metal Deck 683 7.4.2.Composite Beams 699 7.4.3.Composite Haunch Girders716 7.4.4.Composite Trusses718 7.4.5.Composite Stub Girders 718 7.4.6.Composite Columns 727 Chapter 8. Special Topics 731 8.1.Tall Buildings 731 8.1.1.Structural Concepts 732 8.1.2.Case Studies 734 8.1.3.Future of Tall Buildings789 8.1.4.Unit Structural Quantities 797 8.2.Damping Devices for Reducing Motion Perception 796 8.2.1.Passive Viscoelastic Dampers798 8.2.2.Tuned Mass Damper 795 8.2.3.Sloshing Water Damper 803 8.2.4.Tuned Liquid Column Damper 803 8.2.5.Simple Pendulum Damper 805 8.2.6.Nested Pendulum Damper 807 8.3.Panel Zone Effects 807 8.4.Differential Shortening of Columns 872 8.4.1.Simplified Method 816 8.4.2.Column Shortening Verification During Construction 826 8.5.Floor-Leveling Problems 828 8.6.Floor Vibrations 829 8.6.1.General Discussion 829 8.6.2.Response Calculations 831 8.7.Seismic Isolation 835 8.7.1.Salient Features 837 8.7.2.Mechanical Properties of Seismic Isolation Systems 839 8.7.3.Seismically Isolated Structures: ASCE 7-02 Design Provisions 842 8.8.Passive Energy Dissipation Systems 864 8.9.Buckling-Restrained Braced Frame 867 Selected References 873 Appendix AConversion Factors: U.S. Customary to SI Units 877 Index 879
0824759346
624.1762 / TAR